搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法

刘俊池 李洪文 王建立 刘欣悦 马鑫雪

引用本文:
Citation:

基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法

刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪

A temperature and emissivity separation algorithm based on maximum entropy estimation of alpha spectrum's scaling and translation

Liu Jun-Chi, Li Hong-Wen, Wang Jian-Li, Liu Xin-Yue, Ma Xin-Xue
PDF
导出引用
  • 在热红外波段, 为了使温度与发射率分离过程不依赖数据库提供的经验信息, 并且实现更高的反演精度和更快的计算速度, 研究了一种新的温度与发射率分离算法. 首先, 在维恩近似原理的基础上, 求解了Alpha谱分布, 并利用Alpha谱描述光谱发射率的形状信息. 其次, 改进了最大熵温度与发射率分离算法: 应用最大熵估计模型对Alpha谱缩放与平移量进行估计, 减少了待估计参数的数量, 大幅简化了求解过程. 最后, 进行了算法的数值仿真实验: 求解了典型地物目标的温度与光谱发射率, 并且分析了算法对系统噪声的鲁棒性. 仿真数据表明: 发射率估计的最大RMSE为0.017, 温度估计的最大绝对误差的绝对值为0.62 K; 对系统添加测量信噪比为11的高斯白噪声, 发射率估计的相对RMSE为2.67%, 温度估计的相对误差为1.26%. 结果表明: 本文所述算法求解精度高, 计算速度快, 具备良好的鲁棒性.
    In the thermal infrared (TIR) waveband, solving the target emissivity spectrum and temperature leads to an ill-posed problem in which the number of unknown parameters is larger than that of available measurements. Generally, the approaches developed for solving this kind of problems are called, by a joint name, the TES (temperature and emissivity separation) algorithm. As is shown in the name, the TES algorithm is dedicated to separating the target temperature and emissivity in the calculating procedure. In this paper, a novel method called the new MaxEnt (maximum entropy) TES algorithm is proposed, which is considered as a promotion of the MaxEnt TES algorithm proposed by Barducci. The maximum entropy estimation is utilized as the basic framework in the two preceding algorithms, so that the two algorithms both could make temperature and emissivity separation, independent of experiential information derived by some special data bases. As a result, the two algorithms could be applied to solve the temperature and emissivity spectrum of the targets which are absolutely unknown to us. However, what makes the two algorithms different is that the alpha spectrum derived by the ADE (alpha derived emissivity) method is considered as priori information to be added in the new MaxEnt TES algorithm. Based on the Wien approximation, the ADE method is dedicated to the calculation of the alpha spectrum which has a similar distribution to the true emissivity spectrum. Based on the preceding promotion, the new MaxEnt TES algorithm keeps a simpler mathematical formalism. Without any doubt, the new MaxEnt TES algorithm provides a faster computation for large volumes of data (i.e. hyperspectral images of the Earth). Some numerical simulations have been performed; the data and results show that, the maximum RMSE of emissivity estimation is 0.017, the maximum absolute error of temperature estimation is 0.62 K. Added with Gaussian white noise in which the signal to noise ratio is measured to be 11, the relative RMSE of emissivity estimation is 2.67%, the relative error of temperature estimation is 1.26%. Conclusion shows that the new MaxEnt TES algorithm may achieve high accuracy and fast calculating speed, and also get nice robustness against noise.
      通信作者: 李洪文, lihongwen1970@yahoo.com
    • 基金项目: 国家高技术研究发展计划(批准号: 2014AAXXX1003X)资助的课题.
      Corresponding author: Li Hong-Wen, lihongwen1970@yahoo.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AAXXX1003X).
    [1]

    Liu E C, Zheng X B, Li X, Zhang Y N 2013 Optics and Precision Engineering 21 608 (in Chinese) [刘恩超, 郑小兵, 李新, 张艳娜 2013 光学精密工程 21 608]

    [2]

    Yang C Y, Cao L H, Zhang J P 2014 Optics and Precision Engineering 22 1751 (in Chinese) [杨词银, 曹立华, 张建萍 2014 光学精密工程 22 1751]

    [3]

    Li N, Zhang Y F, Liu C X, Cao L H, Guo L H 2014 Optics and Precision Engineering 22 2054 (in Chinese) [李宁, 张云峰, 刘春香, 曹立华, 郭立红 2014 光学精密工程 22 2054]

    [4]

    Kealy P S, Hook S J 1993 IEEE Trans. Geosci. Remote Sensing 31 1155

    [5]

    Wan Z, Li Z L 1997 IEEE Trans. Geosci. Remote Sensing 35 980

    [6]

    Li Z L, Becker F, Stoll M P, Wang Z 1990 Remote Sensing of Environments 69 197

    [7]

    Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S, Kahle A B 1998 IEEE Trans. Geosci. Remote Sensing 36 1113

    [8]

    Xu Z, Zhao H J 2009 Acta Optica Sinica 29 394 (in Chinese) [徐州, 赵慧洁 2009 光学学报 29 394]

    [9]

    Yang H, Zhang L F, Zhang X W, Fang C H, Tong Q X 2011 Journal of Remote Sensing 15 1242 (in Chinese) [杨杭, 张立福, 张学文, 房丛卉, 童庆禧 2011 遥感学报 15 1242]

    [10]

    Kahle A B, Madura D P, Soha J M 1980 Applied Optics 19 2279

    [11]

    Wan Z, Dozier J 1989 IEEE Trans. Geosci. Remote Sensing 27 268

    [12]

    Tang S H, Zhu Q J, Su L H 2005 J. Infrared Millim. Waves 24 286 (in Chinese) [唐世浩, 朱启疆, 苏理宏 2005 红外与毫米波学报 24 286]

    [13]

    Price J C 1984 J. Geophys. Res. 89 7231

    [14]

    Morgan J A 2005 IEEE Trans. Geosci. Remote Sensing 43 1279

    [15]

    Liu Y J, Yang Z D 2001 Principle and Algorithm of Remote Sensing Information Processing for MODIS (Beijing: Sciences Press) p232 (in Chinese) [刘玉洁, 杨忠东 2001 MODIS遥感信息处理原理与算法(北京: 科学出版社) 第232页]

    [16]

    Barducci A, Pippi I 1996 IEEE Trans. Geosci. Remote Sensing 34 681

    [17]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2014 IEEE Trans. Geosci. Remote Sensing 53 738

    [18]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2013 Infrared Physics & Technology 56 12

    [19]

    Kealy P S, Gabell A R 1990 Proc. 2nd TIMS Workshop JPL Pub 90-55 11-15

    [20]

    Jiang X K, Zhang Q C, Shi H T, Mao L, Cheng T, Wu X P 2011 Acta Phys. Sin. 60 054401 (in Chinese) [蒋兴凯, 张青川, 史海涛, 毛亮, 程腾, 伍小平 2011 物理学报 60 054401]

    [21]

    Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y, Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese) [周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶 2014 物理学报 63 148501]

    [22]

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 物理学报 59 7523]

  • [1]

    Liu E C, Zheng X B, Li X, Zhang Y N 2013 Optics and Precision Engineering 21 608 (in Chinese) [刘恩超, 郑小兵, 李新, 张艳娜 2013 光学精密工程 21 608]

    [2]

    Yang C Y, Cao L H, Zhang J P 2014 Optics and Precision Engineering 22 1751 (in Chinese) [杨词银, 曹立华, 张建萍 2014 光学精密工程 22 1751]

    [3]

    Li N, Zhang Y F, Liu C X, Cao L H, Guo L H 2014 Optics and Precision Engineering 22 2054 (in Chinese) [李宁, 张云峰, 刘春香, 曹立华, 郭立红 2014 光学精密工程 22 2054]

    [4]

    Kealy P S, Hook S J 1993 IEEE Trans. Geosci. Remote Sensing 31 1155

    [5]

    Wan Z, Li Z L 1997 IEEE Trans. Geosci. Remote Sensing 35 980

    [6]

    Li Z L, Becker F, Stoll M P, Wang Z 1990 Remote Sensing of Environments 69 197

    [7]

    Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S, Kahle A B 1998 IEEE Trans. Geosci. Remote Sensing 36 1113

    [8]

    Xu Z, Zhao H J 2009 Acta Optica Sinica 29 394 (in Chinese) [徐州, 赵慧洁 2009 光学学报 29 394]

    [9]

    Yang H, Zhang L F, Zhang X W, Fang C H, Tong Q X 2011 Journal of Remote Sensing 15 1242 (in Chinese) [杨杭, 张立福, 张学文, 房丛卉, 童庆禧 2011 遥感学报 15 1242]

    [10]

    Kahle A B, Madura D P, Soha J M 1980 Applied Optics 19 2279

    [11]

    Wan Z, Dozier J 1989 IEEE Trans. Geosci. Remote Sensing 27 268

    [12]

    Tang S H, Zhu Q J, Su L H 2005 J. Infrared Millim. Waves 24 286 (in Chinese) [唐世浩, 朱启疆, 苏理宏 2005 红外与毫米波学报 24 286]

    [13]

    Price J C 1984 J. Geophys. Res. 89 7231

    [14]

    Morgan J A 2005 IEEE Trans. Geosci. Remote Sensing 43 1279

    [15]

    Liu Y J, Yang Z D 2001 Principle and Algorithm of Remote Sensing Information Processing for MODIS (Beijing: Sciences Press) p232 (in Chinese) [刘玉洁, 杨忠东 2001 MODIS遥感信息处理原理与算法(北京: 科学出版社) 第232页]

    [16]

    Barducci A, Pippi I 1996 IEEE Trans. Geosci. Remote Sensing 34 681

    [17]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2014 IEEE Trans. Geosci. Remote Sensing 53 738

    [18]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2013 Infrared Physics & Technology 56 12

    [19]

    Kealy P S, Gabell A R 1990 Proc. 2nd TIMS Workshop JPL Pub 90-55 11-15

    [20]

    Jiang X K, Zhang Q C, Shi H T, Mao L, Cheng T, Wu X P 2011 Acta Phys. Sin. 60 054401 (in Chinese) [蒋兴凯, 张青川, 史海涛, 毛亮, 程腾, 伍小平 2011 物理学报 60 054401]

    [21]

    Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y, Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese) [周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶 2014 物理学报 63 148501]

    [22]

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 物理学报 59 7523]

  • [1] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [4] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [5] 楚化强, 冯艳, 曹文健, 任飞, 顾明言. 灰气体加权和辐射模型综合评估及分析. 物理学报, 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [6] 邓春雨, 侯尚林, 雷景丽, 王道斌, 李晓晓. 单模光纤中用声波导布里渊散射同时测量温度和应变. 物理学报, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [7] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [8] 唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞. 被动遥测矿井CO气体温度及浓度的正演研究. 物理学报, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [9] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [10] 蒋中英, 张国梁, 马晶, 朱涛. 磷脂在膜结构间的交换:温度和离子强度的影响. 物理学报, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [11] 金铭, 白明, 苗俊刚. 阵列型微波黑体的发射率分析. 物理学报, 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [12] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] 耿西钊, 哈斯乌力吉, 郭翔宇, 李杏, 林殿阳, 何伟明, 范瑞清, 吕志伟. 利用受激布里渊散射能量反射率测量液体介质运动黏度方法的研究. 物理学报, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [14] 程正富, 龙晓霞, 郑瑞伦. 温度对光学微腔光子激子系统玻色凝聚的影响. 物理学报, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [15] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [16] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [17] 李荣华, 孟卫民, 彭应全, 马朝柱, 汪润生, 谢宏伟, 王颖, 叶早晨. 阴极功函数和激子产生率对肖特基接触单层有机太阳能电池开路电压的影响研究. 物理学报, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [18] 陈丕恒, 敖冰云, 李炬, 李嵘, 申亮. 温度对bcc铁中He行为影响的模拟研究. 物理学报, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [19] 王启光, 张增平. 近似熵检测气候突变的研究. 物理学报, 2008, 57(3): 1976-1983. doi: 10.7498/aps.57.1976
    [20] 陈国庆, 吴亚敏, 陆兴中. 金属/电介质颗粒复合介质光学双稳的温度效应. 物理学报, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
计量
  • 文章访问数:  4779
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-06
  • 修回日期:  2015-04-17
  • 刊出日期:  2015-09-05

/

返回文章
返回