搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性

李永超 周航 潘丹峰 张浩 万建国

引用本文:
Citation:

Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性

李永超, 周航, 潘丹峰, 张浩, 万建国

Exchange bias effect and magnetoelectric coupling behaviors in multiferroic Co/Co3O4/PZT composite thin films

Li Yong-Chao, Zhou Hang, Pan Dan-Feng, Zhang Hao, Wan Jian-Guo
PDF
导出引用
  • 本文采用溶胶-凝胶工艺并结合脉冲激光沉积技术, 在Pt/Ti/SiO2/Si衬底上制备了Co/Co3O4/PZT多铁复合薄膜. 对复合薄膜的微结构和组分进行了表征, 并系统研究了复合薄膜中的交换偏置效应及其对磁电耦合作用的影响. 研究结果表明, 复合薄膜在77 K具有明显的交换偏置效应, 交换偏置场达到80 Oe, 且交换偏置场及矫顽场均随温度降低而增大. 当温度降低到10 K时, 交换偏置场增至160 Oe. X射线光电子能谱(XPS)测试结果证实在Co和Co3O4界面处存在约5 nm厚的CoO层, 表明77 K下的交换偏置效应源自反铁磁的CoO层对Co的钉扎作用. 观察到复合薄膜的电容-温度曲线随着外加磁场大小和方向的改变而呈现出规律性的变化, 表明复合薄膜存在磁电耦合效应. 进一步研究发现, 在低温下复合薄膜呈现出各向异性的磁电容效应, 与磁场大小和方向密切相关. 复合薄膜的这种磁电耦合特性主要与复合体系的交换偏置效应及基于界面应力传递的磁电耦合作用有关, 本文对其中的物理机理进行了详细讨论与分析.
    The multiferroic Co/Co3O4/PZT composite films are prepared on Pt/Ti/SiO2/Si wafers by sol-gel process combined with pulsed laser deposition method. The phase structures, microstructural topographies and element valence states of the composite films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectrum (XPS). The ferroelectric, electrical and magnetic properties as well as the magnetoelectric coupling behaviors are measured, and the exchange bias effect and its influence on the magnetoelectric coupling behavior of the composite film are studied systematically. #br#The results show the composite films have well-defined ferroelectric hysteresis loops with a remanent polarization value of ~17 μ C/cm2. The composite film exhibits evidently an exchange bias effect. Typically, a exchange bias field of ~80 Oe is observed at 77 K. Both the exchange bias field and magnetic coercive field increase with reducing the temperature. The exchange bias field increases to 160 Oe when the temperature decreases to 10 K. The XPS results confirm that an about 5 nm-thick CoO layer appears at the Co/Co3O4 interface due to the oxygen diffusion during the preparation, indicating that the exchange bias effect at 77 K is caused by the pinning effect of the antiferromagnetic CoO layer while the exchange bias effect at 10 K originates from the combining effect of antiferromagnetic CoO and Co3O4 layers. #br#The measureflent results of magnetocapacitance versus magnetic field curves at different temperatures show that the composite films have remarkable magnetoelectric coupling properties. The response of capacitance to temperature changes with the variation of external magnetic field. Further investigations show that the composite film possesses distinct anisotropic magnetocapacitance effect. When the direction of the magnetic field changes, the magnetocapacitance of the composite film changes from positive value to negative value. Moreover, the magnetocapacitance value changes with the variations of temperature and magnetic field magnitude. Typically, at 300 K a maximum value of positive magnetocapacitance (5.49%) and a minimum value of negative magnetocapacitance of (1.85%) are obtained at -4000 and 4000 kOe, respectively. When the temperature is reduced to 10 K, the positive magnetocapacitance decreases to a minimum value (0.64%) while the negative magnetocapacitance increases to a maximum value (5.4%). We perform a detailed analysis on such a magnetoelectric coupling behavior, and elucidate its origin, which should be attributed to the exchange bias effect and interface-mediated magnetism-stress-electricity coupling process.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB921203)、国家自然科学基金(批准号: 51472113, 11134005)和宁夏高等学校科学研究项目(批准号: NGY2013105)资助的课题.
    • Funds: Projects supported by the State Key Development Program for Basic Research of China (Grant No. 2015CB921203), the National Natural Science Foundation of China (Grant Nos. 51472113, 11134005), and the the Scientific Research Foundation of the Higher Education Institutions of NingXia Province, China (Grant No. NGY2013105).
    [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [2]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [3]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [4]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [7]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [8]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [9]

    Bibes M, Barthélémy A 2008 Nat. Mater. 7 425

    [10]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [11]

    Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles B R, Cantoni M, Rinaldi C, Gutiérrez D, Panaccione G, Varela M, Picozzi S, Fontcuberta J, Bertacco R 2014 Nat. Commun. 5 3404

    [12]

    Lu X L, Kim Y, Goetze S, Li X G, Dong S N, Warner P, Alexe M, Hesse D 2011 Nano Lett. 11 3202

    [13]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin A, nal A A, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M 2014 Nat. Mater. 13 345

    [14]

    Wan J G, Wang X W, Wu Y J, Zeng M, Wang Y, Jiang H, Zhou W Q, Wang G H, Liu J M 2005 Appl. Pys. Lett. 86 122501

    [15]

    Chen B, Li Y C, Wang J Y, Wan J G, Liu J M 2014 J. Appl. Phys. 115 044102

    [16]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [17]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [18]

    Qu T L, Zhao Y G, Yu P, Zhao H C, Zhang S, Yang L F 2014 Appl. Pys. Lett. 100 242410

    [19]

    Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöchel R, Quandt E, Meyners D 2012 Nat. Mater. 11 523

    [20]

    Fan Y, Smith K J, Lpke G, Hanbicki A T, Goswami R, Li C H, Zhao H B, Jonker B T 2013 Nat. Nanotech. 8 438

    [21]

    Nogués J, Schuller K 1999 J. Magn. Magn. Mater. 192 203

    [22]

    Przybylshi K, Smeltzer W W 1981 J. Electrochem. Soc. 128 897

    [23]

    Wang Y X, Zhang Y J, Gao Y M, Lu M, Yang J H 2008 J. Alloys. Compd. 450 128

    [24]

    Vaz C A, Altman E I, Henrich V E 2010 Phys. Rev. B 81 104428

    [25]

    Yu G H, Chai C L, Zhu F W, Xiao J M, Lai W Y 2001 Appl. Pys. Lett. 78 1706

    [26]

    Wang S G, Huan G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935

    [27]

    Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006

    [28]

    Miltényi P, Gierlings M, Keller J, Beschoten B, Gntherodt G 2000 Phys. Rev. Lett. 84 4224

    [29]

    Zhou S M, Sun L, Searon P C, Chien C L 2004 Phys. Rev. B 69 024408

    [30]

    Hong J, Leo T, Smith D J, Berkowitz A E 2006 Phys. Rev. Lett. 96 117204

    [31]

    Kim W, Oh S J, Nahm T U 2002 Sci. Rev. Lett. 9 931

    [32]

    Chuang T J, Brundle C R, Rice D W 1976 Sur. Sci. 59 423

    [33]

    Petitto S C, Langell M A 2004 J. Vac. Sci. Technol. A 22 1690

    [34]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin:Springer Berlin Heidelberg) p916

    [35]

    Bouzid A, Bourim E M, Gabbay M, Fantozzi G 2005 J. Eur. Ceram. Soc. 25 3213

    [36]

    Iliev M, Angelov S, Kostadinov I Z, Bojchev V, Hadjiev V 1982 Phys. Stat. Sol. 71 627

    [37]

    Lee E W 1955 Rep. Prog. Phys.. 18 184

  • [1]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [2]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [3]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [4]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [7]

    Wang K F, Liu J M, Ren Z F 2009 Adv. Phys. 58 321

    [8]

    Hill N A 2000 J. Phys. Chem. B 104 6694

    [9]

    Bibes M, Barthélémy A 2008 Nat. Mater. 7 425

    [10]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [11]

    Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles B R, Cantoni M, Rinaldi C, Gutiérrez D, Panaccione G, Varela M, Picozzi S, Fontcuberta J, Bertacco R 2014 Nat. Commun. 5 3404

    [12]

    Lu X L, Kim Y, Goetze S, Li X G, Dong S N, Warner P, Alexe M, Hesse D 2011 Nano Lett. 11 3202

    [13]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin A, nal A A, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M 2014 Nat. Mater. 13 345

    [14]

    Wan J G, Wang X W, Wu Y J, Zeng M, Wang Y, Jiang H, Zhou W Q, Wang G H, Liu J M 2005 Appl. Pys. Lett. 86 122501

    [15]

    Chen B, Li Y C, Wang J Y, Wan J G, Liu J M 2014 J. Appl. Phys. 115 044102

    [16]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [17]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [18]

    Qu T L, Zhao Y G, Yu P, Zhao H C, Zhang S, Yang L F 2014 Appl. Pys. Lett. 100 242410

    [19]

    Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöchel R, Quandt E, Meyners D 2012 Nat. Mater. 11 523

    [20]

    Fan Y, Smith K J, Lpke G, Hanbicki A T, Goswami R, Li C H, Zhao H B, Jonker B T 2013 Nat. Nanotech. 8 438

    [21]

    Nogués J, Schuller K 1999 J. Magn. Magn. Mater. 192 203

    [22]

    Przybylshi K, Smeltzer W W 1981 J. Electrochem. Soc. 128 897

    [23]

    Wang Y X, Zhang Y J, Gao Y M, Lu M, Yang J H 2008 J. Alloys. Compd. 450 128

    [24]

    Vaz C A, Altman E I, Henrich V E 2010 Phys. Rev. B 81 104428

    [25]

    Yu G H, Chai C L, Zhu F W, Xiao J M, Lai W Y 2001 Appl. Pys. Lett. 78 1706

    [26]

    Wang S G, Huan G, Yu G H, Jiang Y, Wang C, Kohn A, Ward R C C 2007 J. Magn. Magn. Mater. 310 1935

    [27]

    Wang S G, Ward R C C, Hesjedal T, Zhang X G, Wang C, Kohn A, Ma Q L, Zhang J, Liu H F, Han X F 2012 J. Nanosci. Nanotechnol. 12 1006

    [28]

    Miltényi P, Gierlings M, Keller J, Beschoten B, Gntherodt G 2000 Phys. Rev. Lett. 84 4224

    [29]

    Zhou S M, Sun L, Searon P C, Chien C L 2004 Phys. Rev. B 69 024408

    [30]

    Hong J, Leo T, Smith D J, Berkowitz A E 2006 Phys. Rev. Lett. 96 117204

    [31]

    Kim W, Oh S J, Nahm T U 2002 Sci. Rev. Lett. 9 931

    [32]

    Chuang T J, Brundle C R, Rice D W 1976 Sur. Sci. 59 423

    [33]

    Petitto S C, Langell M A 2004 J. Vac. Sci. Technol. A 22 1690

    [34]

    Martienssen W, Warlimont H 2005 Springer Handbook of Condensed Matter and Materials Data (Berlin:Springer Berlin Heidelberg) p916

    [35]

    Bouzid A, Bourim E M, Gabbay M, Fantozzi G 2005 J. Eur. Ceram. Soc. 25 3213

    [36]

    Iliev M, Angelov S, Kostadinov I Z, Bojchev V, Hadjiev V 1982 Phys. Stat. Sol. 71 627

    [37]

    Lee E W 1955 Rep. Prog. Phys.. 18 184

计量
  • 文章访问数:  2209
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-30
  • 修回日期:  2015-02-16
  • 刊出日期:  2015-05-05

Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性

  • 1. 南京大学固体微结构物理国家重点实验室, 南京大学物理学院, 南京 210093;
  • 2. 肯塔基大学物理与天文系, 肯塔基 40506-0055 美国;
  • 3. 人工微结构科学与技术协同创新中心, 南京大学, 南京 210093
    基金项目: 

    国家重点基础研究发展计划(批准号: 2015CB921203)、国家自然科学基金(批准号: 51472113, 11134005)和宁夏高等学校科学研究项目(批准号: NGY2013105)资助的课题.

摘要: 本文采用溶胶-凝胶工艺并结合脉冲激光沉积技术, 在Pt/Ti/SiO2/Si衬底上制备了Co/Co3O4/PZT多铁复合薄膜. 对复合薄膜的微结构和组分进行了表征, 并系统研究了复合薄膜中的交换偏置效应及其对磁电耦合作用的影响. 研究结果表明, 复合薄膜在77 K具有明显的交换偏置效应, 交换偏置场达到80 Oe, 且交换偏置场及矫顽场均随温度降低而增大. 当温度降低到10 K时, 交换偏置场增至160 Oe. X射线光电子能谱(XPS)测试结果证实在Co和Co3O4界面处存在约5 nm厚的CoO层, 表明77 K下的交换偏置效应源自反铁磁的CoO层对Co的钉扎作用. 观察到复合薄膜的电容-温度曲线随着外加磁场大小和方向的改变而呈现出规律性的变化, 表明复合薄膜存在磁电耦合效应. 进一步研究发现, 在低温下复合薄膜呈现出各向异性的磁电容效应, 与磁场大小和方向密切相关. 复合薄膜的这种磁电耦合特性主要与复合体系的交换偏置效应及基于界面应力传递的磁电耦合作用有关, 本文对其中的物理机理进行了详细讨论与分析.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回