搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

切边纳米铁磁盘对中磁涡旋旋性的磁场调控

马晓萍 杨宏国 李昌锋 刘有继 朴红光

引用本文:
Citation:

切边纳米铁磁盘对中磁涡旋旋性的磁场调控

马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光

Control of magnetic vortex circulation in one-side-flat nanodisk pairs by in-plane magnetic filed

Ma Xiao-Ping, Yang Hong-Guo, Li Chang-Feng, Liu You-Ji, Piao Hong-Guang
PDF
HTML
导出引用
  • 铁磁纳米盘中的磁涡旋态因稳定性高, 并且其面内磁化的旋转方向具有天然的二向性(顺时针(CW)和逆时针(CCW)), 可以作为信息存储的一个比特单元而成为最近研究的热点. 基于磁涡旋旋性的信息存储要求人们能够独立地控制磁涡旋的旋转方向. 从旋性的角度考虑, 在一对纳米盘中可能出现四种磁涡旋基态, 即(CCW, CCW), (CCW, CW), (CW, CCW)和(CW, CW). 本文通过引入厚度不同且切边的纳米磁盘对, 并对其施加面内磁场来实现对四种涡旋基态的独立控制, 并通过微磁学模拟证明了这种方法的可行性.
    In a nanodisk made of soft ferromagnet, the magnetic vortex structure are highly stabilized, and the circulation directions of the vortices are naturally binary (either clockwise (CW) or counter-clockwise (CCW)), which can be associated with one bit of information, and thus the magnetic vortices have been of great interest recently. A vortex-circulation-based memory requires the perfect controllability of the circulation direction. From the circulation point of view, there are four possible ground states in a nanodisk pair: (CCW, CCW), (CCW, CW), (CW, CCW) and (CW, CW). In a perfect circular nanodisk, CW and CCW states are degenerate because of the high symmetry of the system. However, the circulation of the magnetic vortex is known to be controlled by introducing the asymmetry. It has been reported that the magnetic vortices with opposite (the same) circulations are realized in one-side-flat disk pair. That means in one-side-flat nanodisk pair only the control of two of these four ground states is possible, eg., (CCW, CW), (CW, CCW) or (CCW, CCW), (CW, CW). We found that the reversal of the magnetic vortex circulation is affected by the nanodisk thickness as well. By further introducing another asymmetry, different thickness, the control of the four circulation ground states is achieved in a nanodisk pair. In this work, the controllability of the four ground states in a nanodisk pair was numerically investigated via micromagnetic simulations. The results show that in a single one-side-flat nanodisk, there exists a preferred rotational sense at the remanent state after the nanodisk is saturated by the external magnetic field, applied parallel to the flat edge of the nanodisk. The shape anisotropy is the primary cause of this phenomenon. We further found that the obtained rotational senses of the magnetization in the vortex state in nanodisks with the same geometrical parameters but different thickness (20 nm and 50 nm) are opposite for the same direction of the externally applied field. This is attributed to the competition between the demagnetization field energy and the exchange energy during the vortex formation. The method we proposed provides a simple means of controlling the vortex state that can thus become a useful tool for designing vortex-based devices.
      通信作者: 朴红光, hgpiao@ctgu.edu.cn
    • 基金项目: 宜昌市科技局项目(批准号: A19-302-05)资助的课题.
      Corresponding author: Piao Hong-Guang, hgpiao@ctgu.edu.cn
    • Funds: Project supported by the Funding of Yichang Municipal Science and Technology Bureau, China (Grant No. A19-302-05)
    [1]

    董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502Google Scholar

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502Google Scholar

    [2]

    Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A 2020 Nat. Mater. 19 34Google Scholar

    [3]

    Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H, Schiffer P 2006 Nature 439 303Google Scholar

    [4]

    Nakano K, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2011 Appl. Phys. Lett. 99 262505Google Scholar

    [5]

    Nakano K, Tanabe K, Hiramatsu R, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2013 Appl. Phys. Lett. 102 072405Google Scholar

    [6]

    Möller M, Gaida J H, Schäfer S, Ropers C 2020 Commun. Phys. 3 36Google Scholar

    [7]

    Noske M, Gangwar A, Stoll H, Kammerer M, Sproll M, Dieterle G, Weigand M, Fähnle M, Woltersdorf G, Back C H, Schütz G 2014 Phys. Rev. B 90 104415Google Scholar

    [8]

    Ma X P, Cai M X, Li P, Shim J H, Piao H G, Kim D H 2020 J. Magn. Magn. Matter 502 166481Google Scholar

    [9]

    Ma X P, Shim J H, Piao H G, Kim D H, Kim D E 2019 Jpn. J. Appl. Phys. 58 100909Google Scholar

    [10]

    Jin W, He H, Chen Y, Liu Y 2009 J. Appl. Phys. 105 013906Google Scholar

    [11]

    Chou K W, Puzic A, Stoll H, Dolgos D, Schütz G 2007 Appl. Phys. Lett. 90 202505Google Scholar

    [12]

    Rückriem R, Schrefl T, Albrecht M 2014 Appl. Phys. Lett. 104 052414Google Scholar

    [13]

    Mesler B L, Buchanan K S, Im M Y, Fischer P 2012 J. Appl. Phys. 111 07D311Google Scholar

    [14]

    Han H S, Lee S, Jung D H, Kang M, Lee K S 2020 Appl. Phys. Lett. 117 042401Google Scholar

    [15]

    Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424Google Scholar

    [16]

    Shimon G, Adeyeye A O, Ross C A 2013 Phys. Rev. B 87 214422Google Scholar

    [17]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407Google Scholar

    [18]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503Google Scholar

    [19]

    Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Šikola T 2013 Nat. Nanotechnol. 8 341Google Scholar

    [20]

    Huang C H, Wu K M, Wu J C, Horng L 2013 J. Appl. Phys. 113 103905Google Scholar

    [21]

    Gaididei Y, Sheka D D, Mertens F G 2008 Appl. Phys. Lett. 92 012503Google Scholar

    [22]

    Li J, Wang Y, Zhao Z, Cao J, Zhu F, Tai R 2020 IEEE Trans. Magn. 56 4300306

    [23]

    Kimura T, Otani Y, Masaki H, Ishida T, Antos R, Shibata J 2007 Appl. Phys. Lett. 90 132501Google Scholar

    [24]

    Sugimoto S, Fukuma Y, Kasai S, Kimura T, Barman A, Otani Y 2011 Phys. Rev. Lett. 106 197203Google Scholar

    [25]

    Konoto M, Yamada T, Koike K, Akoh H, Arima T, Tokura Y 2008 J. Appl. Phys. 103 023904Google Scholar

    [26]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133Google Scholar

    [27]

    Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fähnle M, Brückl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schütz G 2006 Nature 444 461Google Scholar

    [28]

    Vavassori P, Bovolenta R, Metlusho V, Ilic B 2006 J. Appl. Phys. 99 053902Google Scholar

    [29]

    Saitoh E, Kawabata M, Harii K, Miyajima H, Yamaoka T 2004 J. Appl. Phys. 95 1986Google Scholar

    [30]

    Liu Y, Hou Z, Gliga S, Hertel R 2009 Phys. Rev. B 79 104435Google Scholar

    [31]

    Yu Y S, Jung H, Lee K S, Fischer P, Kim S K 2011 Appl. Phys. Lett. 98 052507Google Scholar

  • 图 1  厚度t不同的两对切边的纳米盘的形状和尺寸

    Fig. 1.  Geometry and dimension of one-side-flat nanodisk pairs with different thickness t.

    图 2  厚度(a) t = 50 nm和(b) t = 20 nm的纳米盘的磁滞回线. 图中的颜色和箭头代表xy平面内的磁化方向, 黑色和白色的点分别代表方向朝下和朝上的磁涡旋核. 当磁感应强度从150 mT减小至0 mT时, 厚度为(c) 50 nm和(d) 20 nm的纳米盘的能量密度的变化

    Fig. 2.  Hysteresis loops of (a) t = 50 nm and (b) t = 20 nm nanodisks. The color map as well as the arrows inside the nanodisks represents the magnetization directions in xy plane, and the black and white dots represent downward and upward magnetic vortex core, respectively. Variation of the energy density for (c) t = 50 nm and (d) t = 20 nm nanodisks when the magnetic filed is swept from 150 mT to 0 mT.

    图 3  (a) Pair A和(b) Pair B的磁滞回线. (c) Pair A和(d) Pair B在不同磁感应强度下的磁化分布图

    Fig. 3.  Hysteresis loops of (a) nanodisk Pair A and (b) nanodisk Pair B. The snapshots of local magnetization distribution of nanodisk (c) Pair A and (d) Pair B under different external magnetic field.

    图 4  在Pair B中得到旋性相同(CCW, CCW)的两个磁涡旋

    Fig. 4.  Formation of the magnetic vortices with the same circulations (CCW, CCW) in nanodisk Pair B.

  • [1]

    董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪 2018 物理学报 67 228502Google Scholar

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2018 Acta Phys. Sin. 67 228502Google Scholar

    [2]

    Legrand W, Maccariello D, Ajejas F, Collin S, Vecchiola A, Bouzehouane K, Reyren N, Cros V, Fert A 2020 Nat. Mater. 19 34Google Scholar

    [3]

    Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H, Schiffer P 2006 Nature 439 303Google Scholar

    [4]

    Nakano K, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2011 Appl. Phys. Lett. 99 262505Google Scholar

    [5]

    Nakano K, Tanabe K, Hiramatsu R, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, Ono T 2013 Appl. Phys. Lett. 102 072405Google Scholar

    [6]

    Möller M, Gaida J H, Schäfer S, Ropers C 2020 Commun. Phys. 3 36Google Scholar

    [7]

    Noske M, Gangwar A, Stoll H, Kammerer M, Sproll M, Dieterle G, Weigand M, Fähnle M, Woltersdorf G, Back C H, Schütz G 2014 Phys. Rev. B 90 104415Google Scholar

    [8]

    Ma X P, Cai M X, Li P, Shim J H, Piao H G, Kim D H 2020 J. Magn. Magn. Matter 502 166481Google Scholar

    [9]

    Ma X P, Shim J H, Piao H G, Kim D H, Kim D E 2019 Jpn. J. Appl. Phys. 58 100909Google Scholar

    [10]

    Jin W, He H, Chen Y, Liu Y 2009 J. Appl. Phys. 105 013906Google Scholar

    [11]

    Chou K W, Puzic A, Stoll H, Dolgos D, Schütz G 2007 Appl. Phys. Lett. 90 202505Google Scholar

    [12]

    Rückriem R, Schrefl T, Albrecht M 2014 Appl. Phys. Lett. 104 052414Google Scholar

    [13]

    Mesler B L, Buchanan K S, Im M Y, Fischer P 2012 J. Appl. Phys. 111 07D311Google Scholar

    [14]

    Han H S, Lee S, Jung D H, Kang M, Lee K S 2020 Appl. Phys. Lett. 117 042401Google Scholar

    [15]

    Cambel V, Karapetrov G 2011 Phys. Rev. B 84 014424Google Scholar

    [16]

    Shimon G, Adeyeye A O, Ross C A 2013 Phys. Rev. B 87 214422Google Scholar

    [17]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407Google Scholar

    [18]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503Google Scholar

    [19]

    Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, Šikola T 2013 Nat. Nanotechnol. 8 341Google Scholar

    [20]

    Huang C H, Wu K M, Wu J C, Horng L 2013 J. Appl. Phys. 113 103905Google Scholar

    [21]

    Gaididei Y, Sheka D D, Mertens F G 2008 Appl. Phys. Lett. 92 012503Google Scholar

    [22]

    Li J, Wang Y, Zhao Z, Cao J, Zhu F, Tai R 2020 IEEE Trans. Magn. 56 4300306

    [23]

    Kimura T, Otani Y, Masaki H, Ishida T, Antos R, Shibata J 2007 Appl. Phys. Lett. 90 132501Google Scholar

    [24]

    Sugimoto S, Fukuma Y, Kasai S, Kimura T, Barman A, Otani Y 2011 Phys. Rev. Lett. 106 197203Google Scholar

    [25]

    Konoto M, Yamada T, Koike K, Akoh H, Arima T, Tokura Y 2008 J. Appl. Phys. 103 023904Google Scholar

    [26]

    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Waeyenberge B V 2014 AIP Adv. 4 107133Google Scholar

    [27]

    Van Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fähnle M, Brückl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schütz G 2006 Nature 444 461Google Scholar

    [28]

    Vavassori P, Bovolenta R, Metlusho V, Ilic B 2006 J. Appl. Phys. 99 053902Google Scholar

    [29]

    Saitoh E, Kawabata M, Harii K, Miyajima H, Yamaoka T 2004 J. Appl. Phys. 95 1986Google Scholar

    [30]

    Liu Y, Hou Z, Gliga S, Hertel R 2009 Phys. Rev. B 79 104435Google Scholar

    [31]

    Yu Y S, Jung H, Lee K S, Fischer P, Kim S K 2011 Appl. Phys. Lett. 98 052507Google Scholar

  • [1] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [2] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [3] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [5] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [6] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [7] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [8] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量. 物理学报, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [9] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [10] 吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红. 椭圆纳米盘中磁涡旋结构的方位角自旋波模式. 物理学报, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [11] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [12] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [13] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [14] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [15] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [16] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究. 物理学报, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [17] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [18] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [19] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究. 物理学报, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  3840
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 修回日期:  2020-12-28
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回