搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

消磁场对纳米铁磁线磁畴壁动力学行为的影响

范喆 马晓萍 李尚赫 沈帝虎 朴红光 金东炫

引用本文:
Citation:

消磁场对纳米铁磁线磁畴壁动力学行为的影响

范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫

Influences of the demagnetizing field on dynamic behaviors of the magnetic domain wall in ferromagnetic nanowires

Fan Zhe, Ma Xiao-Ping, Lee Sang-Hyuk, Shim Je-Ho, Piao Hong-Guang, Kim Dong-Hyun
PDF
导出引用
  • 为了实现基于磁畴壁运动的自旋电子学装置, 掌握磁畴壁动力学行为是重要争论之一.研究了在外磁场驱动下L-型纳米铁磁线磁畴壁的动力学行为. 通过微磁学模拟,在各种外磁场的驱动下考察了纳米铁磁线磁畴壁的动力学特性; 在较强外磁场的驱动下, 在不同厚度纳米线上考察了纳米线表面消磁场对磁畴壁动力学行为的影响. 为了进一步证实消磁场对磁畴壁动力学的影响, 在垂直于纳米线表面的外磁场辅助下分析了磁畴壁的动力学行为变化. 结果表明, 随着纳米线厚度和外驱动磁场强度的增加, 增强了纳米线表面的消磁场的形成, 使得磁畴壁内部自旋结构发生周期性变化, 导致磁畴壁在纳米线上传播时出现Walker崩溃现象. 在垂直于纳米线表面的外磁场辅助下, 发现辅助磁场可以调节消磁场的强度和方向. 这意味着利用辅助磁场可以有效地控制纳米铁磁线磁畴壁的动力学行为.
    Understanding of magnetic domain wall dynamic behavior is one of the important issues in the realization of spintronic device based on domain wall motion. We investigate the dynamic behaviors of the magnetic domain wall propagation in L-shaped ferromagnetic nanowires under external magnetic driving fields. By micromagnetic simulation, we observe a dynamic characteristic of the magnetic domain wall in a ferromagnetic nanowire with varying the external field. By changing the nanowire thickness, we examine the influence of the demagnetizing field from the nanowire surface on the domain wall dynamics under a magnetic driving field after Walker breakdown field. Using an auxilliary magnetic field perpendicular to the nanowires, we analyze the effect of the demagnetizing field on the domain wall dynamic behaviors. The results show that the stronger external field or the thicker nanowire can enhance the generation of the demagnetizing field on the nanowire surface, leading to the occurrence of the Walker breakdown phenomenon with the periodic change of the inner spin structure of the domain wall during the domain wall propagation in the nanowires. By using an auxilliary magnetic field perpendicular to the nanowires, we find that the strength and the direction of the demagnetizing field can be modulated. It implies that the dynamic behavior of domain wall propagation in the nanowire is controllable.
    • 基金项目: 韩国国家研究基金(批准号: 2010-0004535, 2010-0021735)资助的课题.
    • Funds: Project supported by the National Research Foundation of Korea (Grant Nos. 2010-0004535, 2010-0021735).
    [1]

    Hubert A, Schafer R 1998 Magnetic Domains: The Analysis of Magnetic Microstructures (Berlin: Springer)

    [2]

    Stöhr J, Siegmann H C 2006 Magnetism: From Fundamentals to Nanoscale Dynamics (Berlin: Springer)

    [3]

    McMichael R D, Eicke J, Donahue M J, Porter D G 2000 J. Appl. Phys. 87 7058

    [4]

    Allwood D A, Xiong G, Cowburn R P 2004 Appl. Phys. Lett. 85 2848

    [5]

    Hara M, Kimura T, Otani Y 2007 Appl. Phys. Lett. 90 242504

    [6]

    Piao H G, Djuhana D, On S K, Yu S C, Kim D H 2009 Appl. Phys. Lett. 94 052501

    [7]

    Meier G, Bolte M, Eiselt R, Kraeuger B, Kim D H, Fischer P 2007 Phys. Rev. Lett. 98 187202

    [8]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [9]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688

    [10]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [11]

    Hayashi M, Thomas L, Moriya R, Rettner C, Parkin S S P 2008 Science 320 209

    [12]

    Lee J Y, Lee K S, Choi S, Guslienko K Y, Kim S K 2007 Phys. Rev. B 76 184408

    [13]

    Piao H G, Shim J H, Lee S H, Djuhana D, Oh S K, Yu S C, Kim D H 2009 IEEE Trans. Magn. 45 3926

    [14]

    Lu H P, Han M G, Deng L J, Liang D F, Ou Y 2010 Acta Phys. Sin. 59 2090 (in Chinese) [陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨 2010 物理学报 59 2090]

    [15]

    Hayashi M, Thomas L, Rettner C, Moriya R, Parkin S S P 2007 Nat. Phys. 3 21

    [16]

    Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K, Ono T 2011 Nat. Mat. 10 194

    [17]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406

    [18]

    Piao H G, Djuhana D, Lee S H, Shim J H, Jun S H, Kim D H 2009 Sae Mulli. 58 715

    [19]

    Donahue M J, Porter D G 1999 NIST Interagency Report No. NISTIR 6376

    [20]

    Rave W, Hubert A 2000 IEEE Trans. Magn. 36 3886

    [21]

    Thiaville A, García J M, Miltat J 2002 J. Mag. Mag. Mater. 242-245 1061

    [22]

    Porter D G, Donahue M J 2004 J. Appl. Phys. 95 6729

    [23]

    Landau L D, Lifshitz E M 1935 Phys. Z. Sowiet 8 153

    [24]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443

    [25]

    Stöhr J, Siegmann H C 2006 Magnetism Form Fundamentals to Nanoscale Dynamics (Berlin: Springer-Verlag) p85

    [26]

    Hayashi M, Thomas L, Rettner C, Moriya R, Jiang X, Parkin S S P 2006 Phys. Rev. Lett. 97 207205

    [27]

    Djuhana D, Piao H G, Lee S H, Kim D H, Ahn S M, Choe S B 2010 Appl. Phys. Lett. 97 022511

    [28]

    Kunz A, Reiff S C 2008 Appl. Phys. Lett. 93 082503

  • [1]

    Hubert A, Schafer R 1998 Magnetic Domains: The Analysis of Magnetic Microstructures (Berlin: Springer)

    [2]

    Stöhr J, Siegmann H C 2006 Magnetism: From Fundamentals to Nanoscale Dynamics (Berlin: Springer)

    [3]

    McMichael R D, Eicke J, Donahue M J, Porter D G 2000 J. Appl. Phys. 87 7058

    [4]

    Allwood D A, Xiong G, Cowburn R P 2004 Appl. Phys. Lett. 85 2848

    [5]

    Hara M, Kimura T, Otani Y 2007 Appl. Phys. Lett. 90 242504

    [6]

    Piao H G, Djuhana D, On S K, Yu S C, Kim D H 2009 Appl. Phys. Lett. 94 052501

    [7]

    Meier G, Bolte M, Eiselt R, Kraeuger B, Kim D H, Fischer P 2007 Phys. Rev. Lett. 98 187202

    [8]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [9]

    Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, Cowburn R P 2005 Science 309 1688

    [10]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190

    [11]

    Hayashi M, Thomas L, Moriya R, Rettner C, Parkin S S P 2008 Science 320 209

    [12]

    Lee J Y, Lee K S, Choi S, Guslienko K Y, Kim S K 2007 Phys. Rev. B 76 184408

    [13]

    Piao H G, Shim J H, Lee S H, Djuhana D, Oh S K, Yu S C, Kim D H 2009 IEEE Trans. Magn. 45 3926

    [14]

    Lu H P, Han M G, Deng L J, Liang D F, Ou Y 2010 Acta Phys. Sin. 59 2090 (in Chinese) [陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨 2010 物理学报 59 2090]

    [15]

    Hayashi M, Thomas L, Rettner C, Moriya R, Parkin S S P 2007 Nat. Phys. 3 21

    [16]

    Koyama T, Chiba D, Ueda K, Kondou K, Tanigawa H, Fukami S, Suzuki T, Ohshima N, Ishiwata N, Nakatani Y, Kobayashi K, Ono T 2011 Nat. Mat. 10 194

    [17]

    Schryer N L, Walker L R 1974 J. Appl. Phys. 45 5406

    [18]

    Piao H G, Djuhana D, Lee S H, Shim J H, Jun S H, Kim D H 2009 Sae Mulli. 58 715

    [19]

    Donahue M J, Porter D G 1999 NIST Interagency Report No. NISTIR 6376

    [20]

    Rave W, Hubert A 2000 IEEE Trans. Magn. 36 3886

    [21]

    Thiaville A, García J M, Miltat J 2002 J. Mag. Mag. Mater. 242-245 1061

    [22]

    Porter D G, Donahue M J 2004 J. Appl. Phys. 95 6729

    [23]

    Landau L D, Lifshitz E M 1935 Phys. Z. Sowiet 8 153

    [24]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443

    [25]

    Stöhr J, Siegmann H C 2006 Magnetism Form Fundamentals to Nanoscale Dynamics (Berlin: Springer-Verlag) p85

    [26]

    Hayashi M, Thomas L, Rettner C, Moriya R, Jiang X, Parkin S S P 2006 Phys. Rev. Lett. 97 207205

    [27]

    Djuhana D, Piao H G, Lee S H, Kim D H, Ahn S M, Choe S B 2010 Appl. Phys. Lett. 97 022511

    [28]

    Kunz A, Reiff S C 2008 Appl. Phys. Lett. 93 082503

  • [1] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [2] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控. 物理学报, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [3] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [4] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [5] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [6] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [7] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [8] 吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟. 磁涡旋极性翻转的局域能量. 物理学报, 2016, 65(21): 217503. doi: 10.7498/aps.65.217503
    [9] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [10] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [11] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [12] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [13] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [14] 朱金荣, 香妹, 胡经国. 铁磁/反铁磁双层膜系统中的磁畴动力学行为. 物理学报, 2012, 61(18): 187504. doi: 10.7498/aps.61.187504
    [15] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [16] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究. 物理学报, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [17] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [18] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [19] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究. 物理学报, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  8337
  • PDF下载量:  1462
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-28
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回