搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟

彭懿 赵国平 吴绍全 斯文静 万秀琳

引用本文:
Citation:

不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟

彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳

Micromagnetic simulation and analysis of Nd2Fe14B/Fe65Co35 magnetic bilayered thin films with different orientations of the easy axis

Peng Yi, Zhao Guo-Ping, Wu Shao-Quan, Si Wen-Jing, Wan Xiu-Lin
PDF
导出引用
  • 运用三维数值模拟计算方法,计算了膜面外不同易轴取向下Nd2Fe14B/Fe65Co35磁性双层膜的磁滞回线、 角度分布、成核场、矫顽力和磁能积等,并与实验结果进行了细致比较. 计算结果表明:只有当易轴与外场之间的夹角β=0°时,才有明显的成核现象,其成核场和矫顽力均随着软磁相厚度Ls的增加而降低; 随着易轴偏角β的增大,剩磁逐渐减小,磁滞回线的方形度降低,从而磁能积减小,在Ls=1 nm,β=0°时磁能积(561.61 kJ/m3)最大. 理论计算所得的磁滞回线与实验磁滞回线符合得很好,剩磁和矫顽力的理论值与实验值相差很小.
    The hysteresis loops, angular distribution, nucleation field, coercivity and energy product are calculated by three-dimensional micromagnetic method for Nd2Fe14B/Fe65Co35 bilayers with a deviation of the easy axis, and the results are compared with the experimental results. The results show that obvious nucleation can be observed only when the β between the easy axis and the applied field is equal to 0°, and the nucleation field and the coercivity decrease as the thickness of the soft phase Ls increases. The remanence decreases and the squareness of the hysteresis loop weakens as β increases, leading to the decrease of the energy product while the largest maximum energy product (561.61 kJ/m3) occurs at Ls=1 nm and β=0°. The shapes of the hysteresis loops, the remanence and the coercivity obtained from calculations and experiments are close to each other.
    • 基金项目: 国家自然科学基金(批准号:11074179,10747007)、四川省高等学校科研创新团队建设计划(批准号:12TD008)和四川师范大学学生科研创新计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179, 10747007), the Scientific Research Innovation Team Program of Institution of Higher Education of Sichuan Province, China (Grant No. 12TD008), and the Scientific Research Innovation Program for Student of Sichuan Normal University, China.
    [1]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812

    [3]

    Schrefl T, Kronmller H, Fidler J 1993 J. Magn. Magn. Mater. 127 L273

    [4]

    Shindo M, Ishizone M, Sakuma A, Kato H, Miyazaki T 1997 J. Appl. Phys. 81 4444

    [5]

    Ping D H, Hono K, Hirosawa S 1998 J. Appl. Phys. 83 7769

    [6]

    Guo Z J, Jiang J S, Pearson J E, Bader S D, Liu J P 2002 Appl. Phys. Lett. 81 2029

    [7]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [8]

    Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D, Srajer G, Liu J P 2004 Appl. Phys. Lett. 85 5293

    [9]

    Zhao G P, Zhou G, Zhang H W, Feng Y P, Xian C W, Zhang Q X 2008 Comput. Mater. Sci. 44 117

    [10]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese) [冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华 2009 物理学报 58 3503]

    [11]

    Chen R J, Rong C B, Zhang H W, He S L, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4341 (in Chinese) [陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根 2004 物理学报 53 4341]

    [12]

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese) [鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509]

    [13]

    Ma B, Wang H, Zhao H B, Sun C G, Acharya R, Wang J P 2010 IEEE Trans. Magn. 46 2345

    [14]

    Hou H C, Liao J W, Lin H J, Chang F H, Chen R Z, Chiu C H, Lai C H 2011 J. Appl. Phys. 109 07C104

    [15]

    Belemuk A M, Chui S T 2011 J. Appl. Phys. 109 093909

    [16]

    Guo G H, Zhang G F, Wang X G 2011 Acta Phys. Sin. 60 107503 (in Chinese) [郭光华, 张光富, 王希光 2011 物理学报 60 107503]

    [17]

    Li Z B, Shen B G, Sun J R 2013 J. Appl. Phys. 113 013902

    [18]

    Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405

    [19]

    Li Z B, Zhang M, Shen B G, Sun J R 2013 Appl. Phys. Lett. 102 102405

    [20]

    Li Y Q, Yue M, Zuo J H, Zhang D T, Liu W Q, Zhang J X, Guo Z H, Li W 2013 IEEE Trans. Magn. 49 3391

    [21]

    Li H L, Lou L, Hou F C, Guo D F, Li W, Li X H, Gunderov D, Sato K, Zhang X Y 2013 Appl. Phys. Lett. 103 142406

    [22]

    Huang C W, Chen Z H, Chen L 2013 J. Appl. Phys. 113 094101

    [23]

    Wang F, Zhang J, Zhang J, Wang C L, Wang Z F, Zeng H, Zhang M G, Xu X H 2013 Appl. Surf. Sci. 271 390

    [24]

    Poudyal N, Liu J P 2013 J. Phys. D: Appl. Phys. 46 043001

    [25]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [26]

    Shi Z, Du J, Zhou S M 2014 Chin. Phys. B 23 027503

    [27]

    Leineweber T, Kronmller H 1997 J. Magn. Magn. Mater. 176 145

    [28]

    Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513

    [29]

    Zhao G P, Wang X L 2006 Phys. Rev. B 74 012409

    [30]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertili F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [31]

    Cui W B, Takahashi Y K, Hono Y 2012 Adv. Mater. 24 6530

    [32]

    Xia J, Zhao G P, Zhang H W, Cheng Z H, Feng Y P 2012 J. Appl. Phys. 112 013918

    [33]

    Donahue M J, Porter D J 1999 OOMMF Use's Guide, Version 1.0 (Gaithersburg: National Institute of Standards and Technology)

    [34]

    Zhang X C, Zhao G P, Xia J 2013 Acta Phys. Sin. 62 218702 (in Chinese) [张溪超, 赵国平, 夏静 2013 物理学报 62 218702]

    [35]

    Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese) [夏静, 张溪超, 赵国平 2013 物理学报 62 227502]

  • [1]

    Kneller E F, Hawig R 1991 IEEE Trans. Magn. 27 3588

    [2]

    Skomski R, Coey J M D 1993 Phys. Rev. B 48 15812

    [3]

    Schrefl T, Kronmller H, Fidler J 1993 J. Magn. Magn. Mater. 127 L273

    [4]

    Shindo M, Ishizone M, Sakuma A, Kato H, Miyazaki T 1997 J. Appl. Phys. 81 4444

    [5]

    Ping D H, Hono K, Hirosawa S 1998 J. Appl. Phys. 83 7769

    [6]

    Guo Z J, Jiang J S, Pearson J E, Bader S D, Liu J P 2002 Appl. Phys. Lett. 81 2029

    [7]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [8]

    Jiang J S, Pearson J E, Liu Z Y, Kabius B, Trasobares S, Miller D J, Bader S D, Lee D R, Haskel D, Srajer G, Liu J P 2004 Appl. Phys. Lett. 85 5293

    [9]

    Zhao G P, Zhou G, Zhang H W, Feng Y P, Xian C W, Zhang Q X 2008 Comput. Mater. Sci. 44 117

    [10]

    Feng C, Zhan Q, Li B H, Teng J, Li M H, Jiang Y, Yu G H 2009 Acta Phys. Sin. 58 3503 (in Chinese) [冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华 2009 物理学报 58 3503]

    [11]

    Chen R J, Rong C B, Zhang H W, He S L, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4341 (in Chinese) [陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根 2004 物理学报 53 4341]

    [12]

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese) [鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509]

    [13]

    Ma B, Wang H, Zhao H B, Sun C G, Acharya R, Wang J P 2010 IEEE Trans. Magn. 46 2345

    [14]

    Hou H C, Liao J W, Lin H J, Chang F H, Chen R Z, Chiu C H, Lai C H 2011 J. Appl. Phys. 109 07C104

    [15]

    Belemuk A M, Chui S T 2011 J. Appl. Phys. 109 093909

    [16]

    Guo G H, Zhang G F, Wang X G 2011 Acta Phys. Sin. 60 107503 (in Chinese) [郭光华, 张光富, 王希光 2011 物理学报 60 107503]

    [17]

    Li Z B, Shen B G, Sun J R 2013 J. Appl. Phys. 113 013902

    [18]

    Li Z B, Shen B G, Niu E, Sun J R 2013 Appl. Phys. Lett. 103 062405

    [19]

    Li Z B, Zhang M, Shen B G, Sun J R 2013 Appl. Phys. Lett. 102 102405

    [20]

    Li Y Q, Yue M, Zuo J H, Zhang D T, Liu W Q, Zhang J X, Guo Z H, Li W 2013 IEEE Trans. Magn. 49 3391

    [21]

    Li H L, Lou L, Hou F C, Guo D F, Li W, Li X H, Gunderov D, Sato K, Zhang X Y 2013 Appl. Phys. Lett. 103 142406

    [22]

    Huang C W, Chen Z H, Chen L 2013 J. Appl. Phys. 113 094101

    [23]

    Wang F, Zhang J, Zhang J, Wang C L, Wang Z F, Zeng H, Zhang M G, Xu X H 2013 Appl. Surf. Sci. 271 390

    [24]

    Poudyal N, Liu J P 2013 J. Phys. D: Appl. Phys. 46 043001

    [25]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [26]

    Shi Z, Du J, Zhou S M 2014 Chin. Phys. B 23 027503

    [27]

    Leineweber T, Kronmller H 1997 J. Magn. Magn. Mater. 176 145

    [28]

    Zhao G P, Zhao M G, Lim H S, Feng Y P, Ong C K 2005 Appl. Phys. Lett. 87 162513

    [29]

    Zhao G P, Wang X L 2006 Phys. Rev. B 74 012409

    [30]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertili F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [31]

    Cui W B, Takahashi Y K, Hono Y 2012 Adv. Mater. 24 6530

    [32]

    Xia J, Zhao G P, Zhang H W, Cheng Z H, Feng Y P 2012 J. Appl. Phys. 112 013918

    [33]

    Donahue M J, Porter D J 1999 OOMMF Use's Guide, Version 1.0 (Gaithersburg: National Institute of Standards and Technology)

    [34]

    Zhang X C, Zhao G P, Xia J 2013 Acta Phys. Sin. 62 218702 (in Chinese) [张溪超, 赵国平, 夏静 2013 物理学报 62 218702]

    [35]

    Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese) [夏静, 张溪超, 赵国平 2013 物理学报 62 227502]

  • [1] 何鑫鑫, 赵倩. 界面原子扩散对SmCo/Fe交换弹簧双层膜磁性能影响的微磁学研究. 物理学报, 2021, 70(19): 197502. doi: 10.7498/aps.70.20210623
    [2] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [3] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [4] 肖俊儒, 刘仲武, 楼华山, 詹慧雄. 利用Pr70Cu30晶界扩散改善烧结钕铁硼废料矫顽力的研究. 物理学报, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [5] 侯志鹏, 苏峰, 王文全. 三元Co79Zr18Cr3合金中高矫顽力. 物理学报, 2014, 63(8): 087501. doi: 10.7498/aps.63.087501
    [6] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [7] 郭子政, 胡旭波. 应力对铁磁薄膜磁滞损耗和矫顽力的影响. 物理学报, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [8] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [9] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [10] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [11] 张帅, 陈喜芳, 阴津华, 张宏伟, 陈京兰, 姜宏伟, 吴光恒. 纳米复合永磁材料中软磁性相交换硬化的研究. 物理学报, 2010, 59(9): 6593-6598. doi: 10.7498/aps.59.6593
    [12] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [13] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [14] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜. 物理学报, 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [15] 史慧刚, 司明苏, 薛德胜. 段化(A/B)m复合纳米线阵列的矫顽力机理. 物理学报, 2005, 54(7): 3402-3407. doi: 10.7498/aps.54.3402
    [16] 贺淑莉, 张宏伟, 荣传兵, 陈仁杰, 孙继荣, 沈保根. 晶粒易轴取向度对纳米晶永磁Pr2Fe14B磁性的影响. 物理学报, 2005, 54(7): 3408-3413. doi: 10.7498/aps.54.3408
    [17] 翁臻臻, 冯 倩, 黄志高, 都有为. 混合磁性薄膜矫顽力及阶梯效应的微磁学及Monte Carlo研究. 物理学报, 2004, 53(9): 3177-3185. doi: 10.7498/aps.53.3177
    [18] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究. 物理学报, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [19] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力. 物理学报, 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [20] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
计量
  • 文章访问数:  2636
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-04-19
  • 刊出日期:  2014-08-05

不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟

  • 1. 四川师范大学物理与电子工程学院, 成都 610068
    基金项目: 国家自然科学基金(批准号:11074179,10747007)、四川省高等学校科研创新团队建设计划(批准号:12TD008)和四川师范大学学生科研创新计划资助的课题.

摘要: 运用三维数值模拟计算方法,计算了膜面外不同易轴取向下Nd2Fe14B/Fe65Co35磁性双层膜的磁滞回线、 角度分布、成核场、矫顽力和磁能积等,并与实验结果进行了细致比较. 计算结果表明:只有当易轴与外场之间的夹角β=0°时,才有明显的成核现象,其成核场和矫顽力均随着软磁相厚度Ls的增加而降低; 随着易轴偏角β的增大,剩磁逐渐减小,磁滞回线的方形度降低,从而磁能积减小,在Ls=1 nm,β=0°时磁能积(561.61 kJ/m3)最大. 理论计算所得的磁滞回线与实验磁滞回线符合得很好,剩磁和矫顽力的理论值与实验值相差很小.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回