搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂效应对β胡萝卜素分子电子振动耦合的影响

徐胜楠 刘天元 孙美娇 李硕 房文汇 孙成林 里佐威

引用本文:
Citation:

溶剂效应对β胡萝卜素分子电子振动耦合的影响

徐胜楠, 刘天元, 孙美娇, 李硕, 房文汇, 孙成林, 里佐威

Solvent effects on the electron-vibration coupling constant of β-carotene

Xu Sheng-Nan, Liu Tian-Yuan, Sun Mei-Jiao, Li Shuo, Fang Wen-Hui, Sun Cheng-Lin, Li Zuo-Wei
PDF
导出引用
  • 测量了10种典型溶剂中β胡萝卜素分子的紫外-可见吸收谱和共振拉曼光谱. 结果表明:溶剂的极化率、介电常数都对β胡萝卜素分子的电子-振动耦合有影响;随着极化率的增大,β胡萝卜素分子的黄昆因子、电子-振动耦合常数减小,拉曼截面增加,且这些影响与溶剂极性无关;随着溶剂介电常数的增加,对于非极性溶剂,β胡萝卜素分子的黄昆因子、电子-振动耦合常数减小,拉曼截面增加,对于极性溶剂,没有获得比较好的规律. 给出了溶剂性质对电子-振动耦合的影响规律,为分子的电子-振动耦合研究中溶剂的选择提供了参考.
    Solvent effect plays an important role in determining electron-vibration coupling constant, however, the physical properties of solvent effects and the relationship between them still need to be investigated. We measure the UV-visible absorption and Raman spectra of β-carotene in 10 typical solvents. The results show that polarizability and dielectric constant of solvent have a significant effect on the electron-vibration coupling constant of β-carotene. With the increase of polarizability, no matter whether the solvent is of polarity, Huang-Ryes factor and the electron-vibration coupling constant of β-carotene decrease and the Raman scattering cross section of β-carotene increases. As to nonpolar solvent, Huang-Ryes factor and the electron-vibration coupling constant of β-carotene decrease with increasing the dielectric constant of the solvent. For polar solvent, no good regularity is obtained. In this paper, the regularity of solvent effect on the electron-vibration coupling constant is presented, which can provide a reference for how to choose the solvent in studying the electron-vibration coupling constant.
    • 基金项目: 国家自然科学基金(批准号:11374123)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0201)和吉林省科技创新团队计划(批准号:20121806)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374123), the Program for the New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-11-0201), and the Science and Technalogy Innovation Research Team Program of Jilin Province, China (Grant No. 20121806).
    [1]

    Qu G N, Li S, Sun C L, Liu T Y, Wu Y L, Sun S, Shan X N, Men Z W, Chen W, Li Z W, Gao S Q 2012 Chin. Phys. B 21 127802

    [2]

    Johansson E M J, Edvinsson T, Odelius M, Hagberg D P, Sun L, Hagfeldt A, Siegbahn H, Rensmo H 2007 J. Phys. Chem. C 111 8580

    [3]

    Oliveira V E, Castro H V, Edwards H G M, Oliveira L F C 2010 J. Raman Spectrosc. 41 642

    [4]

    Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301 (in Chinese) [房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟 2012 物理学报 61 153301]

    [5]

    Niedzwiedzki D M, Enriquez M M, LaFountain A M, Frank H A 2010 Chem. Phys. 373 80

    [6]

    Frank H A, Young A J, Britton G, Cogdell R J 1999 Advances in Photosynthesis (Dordrecht: Kluwer Academic Publishers) pp21-35

    [7]

    Lee J Y, Mhin J B, Kim K S 1997 J. Chem. Phys. 107 4881

    [8]

    Liu W L, Wang D M, Zheng Z R, Li A H, Su W H 2010 Chin. Phys. B 19 013102

    [9]

    Wu Y L, Liu T Y, Sun C L, Qu G N, Li Z W 2013 Acta Phys. Sin. 62 037801 (in Chinese) [吴咏玲, 刘天元, 孙成林, 曲冠男, 里佐威 2013 物理学报 62 037801]

    [10]

    Painelli A, Soos Z G 2006 Chem. Phys. 325 48

    [11]

    Tian Y J, Zuo J, Zhang L Y, Li Z W, Gao S Q, Lu G H 2007 Appl. Phys. B 87 727

    [12]

    Paraschuk D Y, Kobbryanskii V M 2001 Phys. Rev. Lett. 87 207402

    [13]

    Rumi M, Zerbi G, Mullen K, Muller K, Rehahn M 1997 J. Chem. Phys. 106 24

    [14]

    Gierschner J, Mack H G, Luer L, Oelkrug D 2002 J. Chem. Phys. 116 8596

    [15]

    Renge I, Grondelle R V, Dekker J P 1996 J. Photochem. Photobiol. A 96 109

    [16]

    Qu G N, Li D F, Li Z L, Ouyang S L, Li Z W 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威 2010 物理学报 59 3168]

    [17]

    Paraschuk D Y, Arnautov S A, Shchegolikhin A N, Kobryanskii V M 1996 J. Exp. Theor. Phys. Lett. 64 658

    [18]

    Peeters E, Ramos A M, Meskors S C J, Janssen R A J 2000 J. Chem. Phys. 112 9445

    [19]

    Hagler T W, Pakbaz K, Voss K F, Heeger A J 1991 Phys. Rev. B 44 8652

    [20]

    Tubino R, Dordinville R, Lam W, Alfano R R, Birman J L 1984 Phys. Rev. B 30 6601

    [21]

    Ouyang S L, Wang W W, Men Z W, Qu G N, Li Z W, Sun C L 2011 Chin. Phys. B 20 037803

    [22]

    Dudik J M, Johndon C R, Asher S A 1985 J. Chem. Phys. 82 1732

  • [1]

    Qu G N, Li S, Sun C L, Liu T Y, Wu Y L, Sun S, Shan X N, Men Z W, Chen W, Li Z W, Gao S Q 2012 Chin. Phys. B 21 127802

    [2]

    Johansson E M J, Edvinsson T, Odelius M, Hagberg D P, Sun L, Hagfeldt A, Siegbahn H, Rensmo H 2007 J. Phys. Chem. C 111 8580

    [3]

    Oliveira V E, Castro H V, Edwards H G M, Oliveira L F C 2010 J. Raman Spectrosc. 41 642

    [4]

    Fang W H, Li Z W, Li Z L, Qu G N, Ouyang S L, Men Z W 2012 Acta Phys. Sin. 61 153301 (in Chinese) [房文汇, 里佐威, 李占龙, 曲冠男, 欧阳顺利, 门志伟 2012 物理学报 61 153301]

    [5]

    Niedzwiedzki D M, Enriquez M M, LaFountain A M, Frank H A 2010 Chem. Phys. 373 80

    [6]

    Frank H A, Young A J, Britton G, Cogdell R J 1999 Advances in Photosynthesis (Dordrecht: Kluwer Academic Publishers) pp21-35

    [7]

    Lee J Y, Mhin J B, Kim K S 1997 J. Chem. Phys. 107 4881

    [8]

    Liu W L, Wang D M, Zheng Z R, Li A H, Su W H 2010 Chin. Phys. B 19 013102

    [9]

    Wu Y L, Liu T Y, Sun C L, Qu G N, Li Z W 2013 Acta Phys. Sin. 62 037801 (in Chinese) [吴咏玲, 刘天元, 孙成林, 曲冠男, 里佐威 2013 物理学报 62 037801]

    [10]

    Painelli A, Soos Z G 2006 Chem. Phys. 325 48

    [11]

    Tian Y J, Zuo J, Zhang L Y, Li Z W, Gao S Q, Lu G H 2007 Appl. Phys. B 87 727

    [12]

    Paraschuk D Y, Kobbryanskii V M 2001 Phys. Rev. Lett. 87 207402

    [13]

    Rumi M, Zerbi G, Mullen K, Muller K, Rehahn M 1997 J. Chem. Phys. 106 24

    [14]

    Gierschner J, Mack H G, Luer L, Oelkrug D 2002 J. Chem. Phys. 116 8596

    [15]

    Renge I, Grondelle R V, Dekker J P 1996 J. Photochem. Photobiol. A 96 109

    [16]

    Qu G N, Li D F, Li Z L, Ouyang S L, Li Z W 2010 Acta Phys. Sin. 59 3168 (in Chinese) [曲冠男, 李东飞, 李占龙, 欧阳顺利, 里佐威 2010 物理学报 59 3168]

    [17]

    Paraschuk D Y, Arnautov S A, Shchegolikhin A N, Kobryanskii V M 1996 J. Exp. Theor. Phys. Lett. 64 658

    [18]

    Peeters E, Ramos A M, Meskors S C J, Janssen R A J 2000 J. Chem. Phys. 112 9445

    [19]

    Hagler T W, Pakbaz K, Voss K F, Heeger A J 1991 Phys. Rev. B 44 8652

    [20]

    Tubino R, Dordinville R, Lam W, Alfano R R, Birman J L 1984 Phys. Rev. B 30 6601

    [21]

    Ouyang S L, Wang W W, Men Z W, Qu G N, Li Z W, Sun C L 2011 Chin. Phys. B 20 037803

    [22]

    Dudik J M, Johndon C R, Asher S A 1985 J. Chem. Phys. 82 1732

计量
  • 文章访问数:  1707
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-06
  • 修回日期:  2014-04-28
  • 刊出日期:  2014-08-05

溶剂效应对β胡萝卜素分子电子振动耦合的影响

  • 1. 吉林大学超硬材料国家重点实验室, 长春 130012;
  • 2. 吉林大学物理学院, 长春 130012
    基金项目: 

    国家自然科学基金(批准号:11374123)、教育部新世纪优秀人才支持计划(批准号:NCET-11-0201)和吉林省科技创新团队计划(批准号:20121806)资助的课题.

摘要: 测量了10种典型溶剂中β胡萝卜素分子的紫外-可见吸收谱和共振拉曼光谱. 结果表明:溶剂的极化率、介电常数都对β胡萝卜素分子的电子-振动耦合有影响;随着极化率的增大,β胡萝卜素分子的黄昆因子、电子-振动耦合常数减小,拉曼截面增加,且这些影响与溶剂极性无关;随着溶剂介电常数的增加,对于非极性溶剂,β胡萝卜素分子的黄昆因子、电子-振动耦合常数减小,拉曼截面增加,对于极性溶剂,没有获得比较好的规律. 给出了溶剂性质对电子-振动耦合的影响规律,为分子的电子-振动耦合研究中溶剂的选择提供了参考.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回