搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁涡旋极性翻转的局域能量

吕刚 曹学成 张红 秦羽丰 王林辉 厉桂华 高峰 孙丰伟

引用本文:
Citation:

磁涡旋极性翻转的局域能量

吕刚, 曹学成, 张红, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟

Local energy of magnetic vortex core reversal

Lü Gang, Cao Xue-Cheng, Zhang Hong, Qin Yu-Feng, Wang Lin-Hui, Li Gui-Hua, Gao Feng, Sun Feng-Wei
PDF
导出引用
  • 针对坡莫合金纳米圆盘中的单个磁涡旋结构,采用微磁学模拟研究了磁涡旋极性翻转过程中的局域能量密度.磁涡旋的极性翻转通过与初始涡旋极性相反的涡旋与反涡旋对的生成,以及随后发生的反涡旋与初始涡旋的湮没来实现.模拟结果显示当纳米圆盘样品中局域能量密度的最大值达到一临界值时,磁涡旋将会实现极性翻转,其中交换能起主导作用.基于涡旋极性翻转过程中出现的三涡旋态结构,应用刚性磁涡旋模型对局域交换能量密度进行了理论分析.通过刚性磁涡旋模型得到的磁涡旋极性翻转所需的局域交换能量密度的临界值与模拟结果符合得较好.
    The polarity of magnetic vortex core can be switched by current or magnetic field through a vortex-antivortex pair creation and annihilation process, in which the significant change of the exchange energy during the switching takes an important role. To further unveil the energetic origin of magnetic vortex switching, we investigate the evolution of the maximum exchange energy density of the sample by using micromagnetic finite-element simulations based on the Landau-Lifshitz-Gilbert equation including the adiabatic and the nonadiabatic spin torque terms. Our micromagnetic calculations indicate that maximum exchange energy density for the considered sample must exceed a critical value of ~3.0106 J/m3 in order to achieve the magnetic vortex switching. The threshold value corresponds to the maximum exchange energy density at the time of creation of new vortex-antivortex pair. Following the nucleation of antivortex, the maximum exchange energy density increases rapidly with the antivortex approaching the original vortex. The maximum exchange energy density can become large at the time of annihilation of two vortexes. To explain well the critical value of the local maximum exchange energy density, we use the rigid vortex model(in which the spin distribution is unchangeable while vortex is displaced) to develop an analytical model. For a magnetic vortex confined in a thin ferromagnetic nanodisk, the magnetization distribution is unchanged along the thickness and can be seen as a two-dimensional model when the thickness is less than or on the order of the exchange length. The components of vortex magnetization vector in a ferromagnetic dot can be expressed by using a complex function w(,). Corresponding to the trivortex state appearing in vortex core reversal process, the local exchange energy density Wex around the vortexes cores is obtained. Simultaneously, we obtain the maximum exchange energy density:Wex2.3106 J/m3. In a realistic system, the shape of vortexes will deform during the vortex core reversal, which leads to the analytical result lower than the simulation value. Based on this reason, the analytical result matches well with our simulation value.
      通信作者: 张红, zhanghong@sdau.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51302157)资助的课题.
      Corresponding author: Zhang Hong, zhanghong@sdau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 51302157).
    [1]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [2]

    Van-Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruckl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schutz G 2006 Nature 444 461

    [3]

    Liu Y W, Gliga S, Hertel R, Schneider C M 2007 Appl Phys. Lett. 91 112501

    [4]

    Hertel R, Gliga S, Fahnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [5]

    Weigand M, Van-Waeyenberge B, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G, Back C H, Schutz G 2009 Phys. Rev. Lett. 102 077201

    [6]

    Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Woltersdorf G, Back C H, Schutz G, Van-Waeyenberge B 2009 Nat. Phys. 5 332

    [7]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270

    [8]

    Sheka D D, Gaididei Y, Mertens F G 2007 Appl. Phys. Lett. 91 082509

    [9]

    Liu Y W, He H, Zhang Z Z 2007 Appl. Phys. Lett. 91 242501

    [10]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [11]

    Noske M, Stoll H, Föhnle M, Gangwar A, Woltersdorf G, Slavin A, Weigand M, Dieterle G, Förster J, Back H C, Schtz G 2016 J. Appl. Phys. 119 173901

    [12]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [13]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [14]

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505(in Chinese)[孙明娟, 刘要稳2015物理学报64 247505]

    [15]

    Xiao Q F, Rudge J, Choi B C, Hong Y K, Donohoe G 2006 Appl. Phys. Lett. 89 262507

    [16]

    Lee K S, Guslienko K Y, Lee J Y, Kim S K 2007 Phys. Rev. B 76 174410

    [17]

    Kim S K, Choi Y S, Lee K S, Guslienko K Y, Jeong D E 2007 Appl. Phys. Lett. 91 082506

    [18]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [19]

    Zhang H, Liu Y W 2012 J. Nanosci. Nanotechnol. 12 1063

    [20]

    L G, Cao X C, Qin Y F, Wang L H, Li G H, Gao F, Sun F W, Zhang H 2015 Acta Phys. Sin. 64 217501(in Chinese)[吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红2015物理学报64 217501]

    [21]

    Papanicolaou N, Zakrzewski W J 1995 Physica D 80 225

    [22]

    Guslienko K Y, Novosad V, Otani Y, Shima Y, Fukamichi K 2001 Phys. Rev. B 65 024414

    [23]

    Jubert P O, Allenspach R 2004 Phys. Rev. B 70 144402

    [24]

    Lee K S, Choi Y S, Kim S K 2005 Appl. Phys. Lett. 87 192502

  • [1]

    Kikuchi N, Okamoto S, Kitakami O, Shimada Y, Kim S G, Otani Y, Fukamichi K 2001 J. Appl. Phys. 90 6548

    [2]

    Van-Waeyenberge B, Puzic A, Stoll H, Chou K W, Tyliszczak T, Hertel R, Fahnle M, Bruckl H, Rott K, Reiss G, Neudecker I, Weiss D, Back C H, Schutz G 2006 Nature 444 461

    [3]

    Liu Y W, Gliga S, Hertel R, Schneider C M 2007 Appl Phys. Lett. 91 112501

    [4]

    Hertel R, Gliga S, Fahnle M, Schneider C M 2007 Phys. Rev. Lett. 98 117201

    [5]

    Weigand M, Van-Waeyenberge B, Vansteenkiste A, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Kaznatcheev K, Bertwistle D, Woltersdorf G, Back C H, Schutz G 2009 Phys. Rev. Lett. 102 077201

    [6]

    Vansteenkiste A, Chou K W, Weigand M, Curcic M, Sackmann V, Stoll H, Tyliszczak T, Woltersdorf G, Back C H, Schutz G, Van-Waeyenberge B 2009 Nat. Phys. 5 332

    [7]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 270

    [8]

    Sheka D D, Gaididei Y, Mertens F G 2007 Appl. Phys. Lett. 91 082509

    [9]

    Liu Y W, He H, Zhang Z Z 2007 Appl. Phys. Lett. 91 242501

    [10]

    Guslienko K Y, Lee K S, Kim S K 2008 Phys. Rev. Lett. 100 027203

    [11]

    Noske M, Stoll H, Föhnle M, Gangwar A, Woltersdorf G, Slavin A, Weigand M, Dieterle G, Förster J, Back H C, Schtz G 2016 J. Appl. Phys. 119 173901

    [12]

    Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A 2014 Appl. Phys. Lett. 104 012407

    [13]

    Jenkins A S, Grimaldi E, Bortolotti P, Lebrun R, Kubota H, Yakushiji K, Fukushima A, de Loubens G, Klein O, Yuasa S, Cros V 2014 Appl. Phys. Lett. 105 172403

    [14]

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505(in Chinese)[孙明娟, 刘要稳2015物理学报64 247505]

    [15]

    Xiao Q F, Rudge J, Choi B C, Hong Y K, Donohoe G 2006 Appl. Phys. Lett. 89 262507

    [16]

    Lee K S, Guslienko K Y, Lee J Y, Kim S K 2007 Phys. Rev. B 76 174410

    [17]

    Kim S K, Choi Y S, Lee K S, Guslienko K Y, Jeong D E 2007 Appl. Phys. Lett. 91 082506

    [18]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [19]

    Zhang H, Liu Y W 2012 J. Nanosci. Nanotechnol. 12 1063

    [20]

    L G, Cao X C, Qin Y F, Wang L H, Li G H, Gao F, Sun F W, Zhang H 2015 Acta Phys. Sin. 64 217501(in Chinese)[吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红2015物理学报64 217501]

    [21]

    Papanicolaou N, Zakrzewski W J 1995 Physica D 80 225

    [22]

    Guslienko K Y, Novosad V, Otani Y, Shima Y, Fukamichi K 2001 Phys. Rev. B 65 024414

    [23]

    Jubert P O, Allenspach R 2004 Phys. Rev. B 70 144402

    [24]

    Lee K S, Choi Y S, Kim S K 2005 Appl. Phys. Lett. 87 192502

  • [1] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [2] 闫健, 任志伟, 钟智勇. Y3Fe5O12-CoFeB自旋波定向耦合器中的自旋波. 物理学报, 2021, 70(18): 187501. doi: 10.7498/aps.70.20210507
    [3] 马晓萍, 杨宏国, 李昌锋, 刘有继, 朴红光. 切边纳米铁磁盘对中磁涡旋旋性的磁场调控. 物理学报, 2021, 70(10): 107502. doi: 10.7498/aps.70.20201995
    [4] 李栋, 董生智, 李磊, 徐吉元, 陈红升, 李卫. 核((Nd0.7, Ce0.3)2Fe14B)-壳(Nd2Fe14B)型磁体反磁化的微磁学模拟. 物理学报, 2020, 69(14): 147501. doi: 10.7498/aps.69.20200435
    [5] 吕刚, 张红, 侯志伟. 具有倾斜极化层的自旋阀结构中磁翻转以及磁振荡模式的微磁模拟. 物理学报, 2018, 67(17): 177502. doi: 10.7498/aps.67.20180947
    [6] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [7] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [8] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [9] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] 吕刚, 曹学成, 秦羽丰, 王林辉, 厉桂华, 高峰, 孙丰伟, 张红. 椭圆纳米盘中磁涡旋结构的方位角自旋波模式. 物理学报, 2015, 64(21): 217501. doi: 10.7498/aps.64.217501
    [11] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [12] 孙明娟, 刘要稳. 电流调控磁涡旋的极性和旋性. 物理学报, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [13] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳. 不同易轴取向下对Nd2Fe14B/Fe65Co35磁性双层膜的微磁学模拟. 物理学报, 2014, 63(16): 167505. doi: 10.7498/aps.63.167505
    [14] 夏静, 张溪超, 赵国平. 易轴取向对Nd2Fe14B/α-Fe双层膜退磁过程影响的微磁学分析. 物理学报, 2013, 62(22): 227502. doi: 10.7498/aps.62.227502
    [15] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [16] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [17] 宋三元, 郭光华, 张光富, 宋文斌. 矩形磁性纳米点动力学反磁化过程的微磁学研究. 物理学报, 2009, 58(8): 5757-5762. doi: 10.7498/aps.58.5757
    [18] 阴津华, C. H. Hee, 潘礼庆. 反铁磁耦合记录介质的一级翻转曲线. 物理学报, 2008, 57(11): 7287-7291. doi: 10.7498/aps.57.7287
    [19] 杨秀会. W(110)基底上的铁纳米岛初始自发磁化态的微磁学模拟. 物理学报, 2008, 57(11): 7279-7286. doi: 10.7498/aps.57.7279
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究. 物理学报, 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  5717
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-14
  • 修回日期:  2016-07-31
  • 刊出日期:  2016-11-05

/

返回文章
返回