搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称双原子分子在输运扩散中的取向效应

江智亮 陈沛荣 钟伟荣 艾保全 邵志刚

引用本文:
Citation:

非对称双原子分子在输运扩散中的取向效应

江智亮, 陈沛荣, 钟伟荣, 艾保全, 邵志刚

Orientation effect of asymmetric diatomic molecules in transport diffusion

Jiang Zhi-Liang, Chen Pei-Rong, Zhong Wei-Rong, Ai Bao-Quan, Shao Zhi-Gang
PDF
导出引用
  • 本文建立了同时具有化学势梯度和温度梯度的非平衡系统,研究非对称双原子分子的输运扩散行为.研究发现,双原子分子在非平衡输运中具有取向效应.浓度梯度与温度梯度使双原子分子在输运中产生的大小原子取向的方向刚好相反,沿着梯度的正方向,前者使小原子在前,后者使大原子在前.通过最小熵产生原理,解释了取向的物理机制.研究结果对于深刻理解非平衡条件下物质的输运与其形态的关系具有理论意义.
    Non-equilibrium transport is an important research area in statistical physics. The influences of the structures of polyatomic molecules on their transport have attracted the attention of researchers. Up to now, most of researchers deemed that temperature gradient is the main factor for molecular orientation and neglected the effect of the chemical potential gradient on the molecular orientation. To make up the deficiency in the study of chemical potential gradients, we build a non-equilibrium system with both chemical potential gradient and temperature gradient, and study the transport diffusion behavior of asymmetric diatomic molecules by using molecular dynamics and Monte Carlo methods. It is found that the diatomic molecules implement the orientation effect during non-equilibrium transport. Under the chemical potential gradient, the molecular orientation effect leads to the fact that the large atom tends to be in the direction of low concentration particle bath, while the small atom tends to be in the direction of high concentration particle bath. The molecular orientation is opposite to the direction of the flow. Under the temperature gradient, the molecular orientation effect leads to the fact that the large atom tends to be in the direction of high temperature particle bath, while the small atom tends to be in the direction of low temperature particle bath. The molecular orientation is the same as the direction of the flow. The orientation direction caused by concentration gradients is opposite to that caused by temperature gradients and it appears as a competitive relationship. At the same time, the influence of the asymmetry of the molecule itself on the molecular orientation is also studied. The larger the asymmetry of the molecule itself (σB/σA), the more obvious the molecular orientation effect is. When σB/σA>1.6, the influence of the asymmetry of the molecule itself on the orientation effect is gradually saturated. When σB/σA=1, which is also for a symmetric molecule, even if neither the temperature gradient nor the chemical potential gradient is zero, no molecular orientation occurs. We explain the physical mechanism of orientation through the principle of minimum entropy production. This work is of theoretical significance for in depth understanding the relationship between mass transport and molecular structure under non-equilibrium conditions.
      通信作者: 钟伟荣, wrzhong@hotmail.com;aibq@scnu.edu.cn ; 艾保全, wrzhong@hotmail.com;aibq@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11575064)和广东省自然科学基金(批准号:2014A030313367)资助的课题.
      Corresponding author: Zhong Wei-Rong, wrzhong@hotmail.com;aibq@scnu.edu.cn ; Ai Bao-Quan, wrzhong@hotmail.com;aibq@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11575064) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030313367).
    [1]

    Karger J, Grinberg F, Heitjans P 2005 Diffusion Fundamentals (Leipzig: Leipziger Universitatsverlag) p80

    [2]

    Skoulidas A I, Sholl D S 2002 Phys. Chem. B 106 5058

    [3]

    Papadopoulos G K, Jobic H, Theodorou D N 2004 J. Phys. Chem. B 108 12748

    [4]

    Mutat T, Adler J, Sheintuch M 2012 J. Chem. Phys. 136 234902

    [5]

    Xu Z C, Zheng D Q, Ai B Q, Hu B, Zhong W R 2015 AIP Adv. 5 107145

    [6]

    Salles F, Jobic H, Devic T, Llewellyn P L, Serre C, Ferey G, Maurin G 2010 ACS Nano 4 143

    [7]

    Romer F, Bresme F, Muscatello J, Bedeaux D, Rubi J M 2012 Phys. Rev. Lett. 108 105901

    [8]

    Lee A A 2016 Soft Matter 12 8661

    [9]

    Tan Z H, Yang M C, Pipoll M 2017 Soft Matter 13 7283

    [10]

    Gustavsson K, Jucha J, Naso A, Leveque E, Pumir A, Mehilg B 2017 Phys. Rev. Lett. 119 254501

    [11]

    Kiharu A, Him K D 2017 J. Phys. Chem. Lett. 8 3595

    [12]

    Peter W, Domagoj F, Roger A L, Andela S, Christoph D, Daan F 2017 PNAS 114 4911

    [13]

    Christopher D D, Joakim T, Signe K, Dick B, Fernando B 2016 Phys. Chem. Chem. Phys. 18 12213

    [14]

    Kubo R 1957 J. Phys. Soc. Jpn. 12 570

    [15]

    Seifert U 2005 Phys. Rev. Lett. 95 040602

    [16]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104

    [17]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p9 (in Chinese) [陈正隆 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第9页]

    [18]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (1st Ed.) (Oxford: Oxford University Press) p13

    [19]

    Tabar H R 2008 Computational Physics of Carbon Nanotubes (1st Ed.) (Cambridge: Cambridge University Press) p113

    [20]

    Landau D P, Binder K 2014 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (Cambridge: Cambridge University Press) p196

    [21]

    Adams D J 1975 Mol. Phys. 29 307

    [22]

    Chen P R, Xu Z C, Gu Y, Zhong W R 2016 Chin. Phys. B 25 086601

  • [1]

    Karger J, Grinberg F, Heitjans P 2005 Diffusion Fundamentals (Leipzig: Leipziger Universitatsverlag) p80

    [2]

    Skoulidas A I, Sholl D S 2002 Phys. Chem. B 106 5058

    [3]

    Papadopoulos G K, Jobic H, Theodorou D N 2004 J. Phys. Chem. B 108 12748

    [4]

    Mutat T, Adler J, Sheintuch M 2012 J. Chem. Phys. 136 234902

    [5]

    Xu Z C, Zheng D Q, Ai B Q, Hu B, Zhong W R 2015 AIP Adv. 5 107145

    [6]

    Salles F, Jobic H, Devic T, Llewellyn P L, Serre C, Ferey G, Maurin G 2010 ACS Nano 4 143

    [7]

    Romer F, Bresme F, Muscatello J, Bedeaux D, Rubi J M 2012 Phys. Rev. Lett. 108 105901

    [8]

    Lee A A 2016 Soft Matter 12 8661

    [9]

    Tan Z H, Yang M C, Pipoll M 2017 Soft Matter 13 7283

    [10]

    Gustavsson K, Jucha J, Naso A, Leveque E, Pumir A, Mehilg B 2017 Phys. Rev. Lett. 119 254501

    [11]

    Kiharu A, Him K D 2017 J. Phys. Chem. Lett. 8 3595

    [12]

    Peter W, Domagoj F, Roger A L, Andela S, Christoph D, Daan F 2017 PNAS 114 4911

    [13]

    Christopher D D, Joakim T, Signe K, Dick B, Fernando B 2016 Phys. Chem. Chem. Phys. 18 12213

    [14]

    Kubo R 1957 J. Phys. Soc. Jpn. 12 570

    [15]

    Seifert U 2005 Phys. Rev. Lett. 95 040602

    [16]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104

    [17]

    Chen Z L 2007 Theory and Practice of Molecular Simulation (Beijing: Chemical Industry Press) p9 (in Chinese) [陈正隆 2007 分子模拟的理论与实践 (北京: 化学工业出版社) 第9页]

    [18]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (1st Ed.) (Oxford: Oxford University Press) p13

    [19]

    Tabar H R 2008 Computational Physics of Carbon Nanotubes (1st Ed.) (Cambridge: Cambridge University Press) p113

    [20]

    Landau D P, Binder K 2014 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (Cambridge: Cambridge University Press) p196

    [21]

    Adams D J 1975 Mol. Phys. 29 307

    [22]

    Chen P R, Xu Z C, Gu Y, Zhong W R 2016 Chin. Phys. B 25 086601

  • [1] 林智远, 申威, 苏山河, 陈金灿. 库仑耦合双量子点系统的熵产生率. 物理学报, 2020, 69(13): 130501. doi: 10.7498/aps.69.20191879
    [2] 江永红, 孙卫国, 张燚, 付佳, 樊群超. 差分收敛法对双原子分子高J值转动谱线的预言. 物理学报, 2016, 65(7): 070202. doi: 10.7498/aps.65.070202
    [3] 袁丽, 樊群超, 孙卫国, 范志祥, 冯灏. 用代数-能量自洽法研究双原子分子解析势能函数. 物理学报, 2014, 63(4): 043102. doi: 10.7498/aps.63.043102
    [4] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象. 物理学报, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [5] 付佳, 樊群超, 孙卫国, 胡石, 江永红. VN分子R线系跃迁结构的研究与分析. 物理学报, 2013, 62(23): 233301. doi: 10.7498/aps.62.233301
    [6] 刘渭宁, 樊群超, 孙卫国, 冯灏, 胡石. VO分子2Δ3/2-12Δ3/2电子跃迁P线系发射谱线的研究. 物理学报, 2012, 61(17): 173301. doi: 10.7498/aps.61.173301
    [7] 张燚, 孙卫国, 付佳, 樊群超, 冯灏, 李会东. 用节点变分的代数方法研究双原子体系的完全振动能谱和离解能. 物理学报, 2012, 61(13): 133301. doi: 10.7498/aps.61.133301
    [8] 王琪, 樊群超, 孙卫国, 冯灏. 精确研究NbN分子d1+b1+电子态跃迁的P线系发射光谱. 物理学报, 2012, 61(4): 043301. doi: 10.7498/aps.61.043301
    [9] 田寅, 冯灏, 孙卫国. 碱金属双原子分子部分电子态的完全振动能谱和离解能. 物理学报, 2011, 60(2): 023301. doi: 10.7498/aps.60.023301
    [10] 樊群超, 孙卫国, 李会东, 冯灏. CO电子基态P线系跃迁谱线的理论研究. 物理学报, 2011, 60(6): 063301. doi: 10.7498/aps.60.063301
    [11] 刘芳, 王军, 赵娟, 许燕, 孟庆田. 红外场对双原子分子振动布居影响的李代数方法研究. 物理学报, 2011, 60(4): 040202. doi: 10.7498/aps.60.040202
    [12] 樊群超, 孙卫国, 渠双双. 用代数方法精确研究HF分子B1Σ的振转能谱. 物理学报, 2008, 57(7): 4110-4118. doi: 10.7498/aps.57.4110
    [13] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响. 物理学报, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [14] 李新喜, 孙卫国, 冯 灏. 用能量自洽法研究异核双原子分子的势能曲线. 物理学报, 2003, 52(2): 307-311. doi: 10.7498/aps.52.307
    [15] 邢修三. 熵产生率公式及其应用. 物理学报, 2003, 52(12): 2970-2977. doi: 10.7498/aps.52.2970
    [16] 王友年, 李宏伟. 尾流效应对快速双原子分子离子在固体中电荷态及分子轴取向的影响. 物理学报, 2002, 51(4): 857-862. doi: 10.7498/aps.51.857
    [17] 文 静, 孙卫国, 冯 灏. 用能量自洽法研究碱金属双原子分子的势能曲线. 物理学报, 2000, 49(12): 2352-2356. doi: 10.7498/aps.49.2352
    [18] 孙久勋. 严格可解四参数双原子分子势函数. 物理学报, 1999, 48(11): 1992-1998. doi: 10.7498/aps.48.1992
    [19] 孙飚, 李家明. 以Si为联合原子的分子系列双原子分子的里德伯能级结构. 物理学报, 1992, 41(6): 873-880. doi: 10.7498/aps.41.873
    [20] 阎宏, 常哲, 郭汉英. q变形转动振子模型(Ⅰ)——q振子与双原子分子振动谱. 物理学报, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
计量
  • 文章访问数:  6831
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-09-29
  • 刊出日期:  2019-11-20

/

返回文章
返回