搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

库仑耦合双量子点系统的熵产生率

林智远 申威 苏山河 陈金灿

引用本文:
Citation:

库仑耦合双量子点系统的熵产生率

林智远, 申威, 苏山河, 陈金灿

The entropy production rate of double quantum-dot system with Coulomb coupling

Lin Zhi-Yuan, Shen Wei, Su Shan-He, Chen Jin-Can
PDF
HTML
导出引用
  • 本文基于库仑耦合双量子点复合系统, 研究了自发非平衡过程中熵产生率与信息流的基本关系. 从玻恩马尔科夫近似下的量子运动主方程出发, 获得稳态时总系统和子系统的熵产生率. 利用Schnakenberg网络理论, 揭示了各种熵产生率与基本环流的密切联系, 发现全局环流决定了双量子点间的能量和信息交换, 从而证明了化学势差驱动电子流动以及子系统间能量和信息交换是子系统熵产生的关键要素, 信息交换引起的熵产生保证了电子输运的持续进行. 结果表明在不违背热力学第二定律的基本条件下, 信息可作为驱动力使电子从低化学势流向高化学势.
    In thermodynamics of irreversible processes, the entropy production rate (EPR) is usually generated by the rate of the entropy change of the system due to its internal transitions and the entropy flows due to the interactions between the system and the environment. For the bipartite system, in addition to the factors mentioned above, the energy and information exchanges between the two subsystems will generate an additional entropy production in the EPR of a subsystem. To reveal the essence and role of the information flow, we build an open dissipative quantum system coupled to multiple electronic reservoirs with the same temperature and different chemical potentials. Based on the thermal and electron transport properties of a double quantum-dot system with Coulomb coupling, the EPR of each quantum dot and the information flow between subsystems are studied. Starting from the quantum master equation under the Born, Markov, and rotating-wave (or secular) approximations, we derive the EPRs of the total system and subsystems at the steady state. For purposes of relating the thermodynamic properties to the fundamental fluxes and affinities, a graph representation of the dynamics of the four-state model is introduced. Selecting a directed graph and a complete set of basic cycles by using Schnakenberg’s network theory, we show how the EPRs of the total system and the subsystems relate to global and local cycle fluxes. It is found that the energy and information exchanges between the quantum dots depend on the global cycle flux. The EPRs induced by the electron flows due to the chemical potential difference as well as the energy and information exchanges between the subsystems are the key elements of thermodynamic irreversibilities. The EPRs caused by the information exchange guarantee the continuous electron transports. The EPRs and the coarse-grained EPRs of the subsystems varying with the Coulomb coupling strength are obtained numerically. The results demonstrate that the information flows in the process of internal exchange become important to fully understand the operation mechanism of the bipartite system. Without violating the second law of thermodynamics, the information can be regarded as a driving force to move electrons from low to high chemical potential.
      通信作者: 苏山河, sushanhe@xmu.edu.cn
    • 基金项目: 国家级-光化学与光电转化器件中的量子效应和热力学特性研究(11805159)
      Corresponding author: Su Shan-He, sushanhe@xmu.edu.cn
    [1]

    吴联仁, 李瑾颉, 齐佳音 2019 物理学报 68 078901Google Scholar

    Wu L R, Li J J, Qi J J 2019 Acta Phys. Sin. 68 078901Google Scholar

    [2]

    陈俊, 於亚飞, 张智明 2015 物理学报 64 160305Google Scholar

    Chen J, Yu Y F, Zhang Z M 2015 Acta Phys. Sin. 64 160305Google Scholar

    [3]

    孙昌璞, 全海涛 2013 物理 42 756

    Sun C P, Quan H T 2013 Physics 42 756

    [4]

    Quan H T, Wang Y D, Liu Y, Sun C P, Nori F 2006 Phys. Rev. Lett. 97 180402Google Scholar

    [5]

    Cottet N, Jezouin S, Bretheau L, Campagne-lbarcq P, Ficheux Q, Aufers J, Auffèves A, Azouit R, Rouchon P, Huard B 2017 Proc. Natl. Acad. Sci. U.S.A. 114 7561Google Scholar

    [6]

    Park J, Kim K, Sagawa T, Kim S 2013 Phys. Rev. Lett. 111 230402Google Scholar

    [7]

    Paneru G, Lee D, Tlusty T, Pak H 2018 Phys. Rev. Lett. 120 020601Google Scholar

    [8]

    Dong H, Xu D Z, Cai C Y, Sun C P 2011 Phys. Rev. E 83 061108Google Scholar

    [9]

    Cai C Y, Dong H, Sun C P 2012 Phys. Rev. E 85 031114Google Scholar

    [10]

    Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M 2010 Nat. Phys. 6 988Google Scholar

    [11]

    Lebedev A V, Lesovik G B, Vinokur V M, Blatter G 2018 Phys. Rev. B 98 214502Google Scholar

    [12]

    Naghiloo M, Alonso J J, Romito A, Lutz E, Murch K W 2018 Phys. Rev. Lett. 121 030604Google Scholar

    [13]

    Schaller G, Cerrillo J, Engelhardt G, Strasberg P 2018 Phys. Rev. B 97 195104Google Scholar

    [14]

    Jacobs K 2009 Phys. Rev. A 80 012322Google Scholar

    [15]

    Granger L, Kantz H 2011 Phys. Rev. E 84 061110Google Scholar

    [16]

    Sagawa T, Ueda M 2008 Phys. Rev. Lett. 100 080403Google Scholar

    [17]

    Koch-Janusz M, Ringel Z 2018 Nat. Phys. 14 578Google Scholar

    [18]

    Mehta P, Lang A H, Schwab D J 2016 J. Stat. Phys. 162 1153Google Scholar

    [19]

    Ito S, Sagawa T 2015 Nat. Commun. 6 7498Google Scholar

    [20]

    Barato A C, Hartich D, Seifert U 2014 New J. Phys. 16 103024Google Scholar

    [21]

    Mehta P, Schwab D J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17978Google Scholar

    [22]

    李唯, 符婧, 杨贇贇, 何济洲 2019 物理学报 68 220501Google Scholar

    Li W, Fu J, Yang Y Y, He J Z 2019 Acta Phys. Sin. 68 220501Google Scholar

    [23]

    何弦, 何济洲, 肖宇玲 2012 物理学报 61 150302Google Scholar

    He X, He J Z, Xiao Y L 2012 Acta Phys. Sin. 61 150302Google Scholar

    [24]

    Horowitz J M, Esposito M 2014 Phys. Rev. X 4 031015

    [25]

    Barato A C, Hartich D, Seifert U 2014 New Journal of Physics 16 103024

    [26]

    Yamamoto S, Ito S, Shiraishi N, Sagawa T 2016 Phys. Rev. E 94 052121

    [27]

    Ptaszyński K, Esposito M 2019 Phys. Rev. Lett. 122 150603Google Scholar

    [28]

    Strasberg P, Schaller G, Brandes T, Esposito M 2017 Phys. Rev. X 7 021003

    [29]

    Schnakenberg J 1976 Rev. Mod. Phys. 48 571Google Scholar

    [30]

    Breuer H P, Petruccione F 2001 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp110–149

    [31]

    Schaller G 2014 Open Quantum Systems Far from Equilibrium (New York: Springer) pp73–74

    [32]

    Spohn H 1978 J. Math. Phys. 19 1227Google Scholar

    [33]

    Esposito M, Harbola U, Mukamel S 2009 Rev. Mod. Phys. 81 1665Google Scholar

    [34]

    Thulasiraman K, Swamy M N S 1997 Graphs: Theory and Algorithms (New York: John Wiley & Sons) pp1–26

    [35]

    Sagawa T, Ueda M 2013 New J. Phys. 15 125012Google Scholar

    [36]

    Bauer M, Abreu D, Seifert U 2012 J. Phys. A: Math. Theor. 45 162001Google Scholar

    [37]

    Ito S, Sagawa T 2013 Phys. Rev. Lett. 111 180603Google Scholar

  • 图 1  库仑耦合双量子点非平衡系统

    Fig. 1.  The nonequilibrium double quantum-dot system with Coulomb coupling.

    图 2  库仑耦合双量子点系统的状态点和跃迁模式

    Fig. 2.  The states and transition modes of the double quantum-dot system with Coulomb coupling.

    图 3  四态模型的有向图及其基本循环

    Fig. 3.  The directed graph of the four-state model and its cycle basis.

    图 4  (a)熵产生率${\dot S_{\rm{T}}}$, ${\dot S_X}$${\dot S_Y}$及(b)电子流${J_X}$${J_Y}$随库仑耦合强度的变化曲线. 其中$\beta \Delta {\mu _X} = 2$, $\beta \Delta {\mu _Y} = 1$, $ \delta =\varDelta =1 $, ${\varepsilon _X} = \dfrac{{\left( {{\mu _{XR}} + {\mu _{XL}}} \right)}}{2} - \dfrac{U}{2}$, ${\varepsilon _Y} = \dfrac{{\left( {{\mu _{YR}} + {\mu _{YL}}} \right)}}{2} - \dfrac{U}{2}$

    Fig. 4.  (a) The entropy production rates ${\dot S_{\rm{T}}}$, ${\dot S_X}$, and ${\dot S_Y}$, and (b) the curves of the electron flows ${J_X}$ and ${J_Y}$ varying with the Coulomb coupling strength, where $\beta \Delta {\mu _X} = 2$, $\beta \Delta {\mu _Y} = 1$, $\delta \!=\!\varDelta \!=\!1$, ${\varepsilon _X} \!=\! \dfrac{{\left( {{\mu _{XR}} + {\mu _{XL}}} \right)}}{2} \!-\! \dfrac{U}{2}$, and ${\varepsilon _Y} \!=\! \dfrac{{\left( {{\mu _{YR}} + {\mu _{YL}}} \right)}}{2} - \dfrac U2$

    图 5  部分熵产生率${\dot S_{{\mu _i}}}$, ${\dot S_{{U_i}}}$${\dot I_i}\left( {i = X, Y} \right)$随库仑耦合强度的变化曲线.

    Fig. 5.  The curves of the partial entropy production rates ${\dot S_{{\mu _i}}}$, ${\dot S_{{U_i}}}$, and ${\dot I_i}\left( {i = X, Y} \right)$ varying with the Coulomb coupling strength.

    图 6  粗粒化熵产生率${\sigma _i}\left( {i = X, Y} \right)$随库仑耦合强度变化曲线

    Fig. 6.  The curves of the coarse-grained entropy production rates ${\sigma _i}\left( {i = X, Y} \right)$ varying with the Coulomb coupling strength.

  • [1]

    吴联仁, 李瑾颉, 齐佳音 2019 物理学报 68 078901Google Scholar

    Wu L R, Li J J, Qi J J 2019 Acta Phys. Sin. 68 078901Google Scholar

    [2]

    陈俊, 於亚飞, 张智明 2015 物理学报 64 160305Google Scholar

    Chen J, Yu Y F, Zhang Z M 2015 Acta Phys. Sin. 64 160305Google Scholar

    [3]

    孙昌璞, 全海涛 2013 物理 42 756

    Sun C P, Quan H T 2013 Physics 42 756

    [4]

    Quan H T, Wang Y D, Liu Y, Sun C P, Nori F 2006 Phys. Rev. Lett. 97 180402Google Scholar

    [5]

    Cottet N, Jezouin S, Bretheau L, Campagne-lbarcq P, Ficheux Q, Aufers J, Auffèves A, Azouit R, Rouchon P, Huard B 2017 Proc. Natl. Acad. Sci. U.S.A. 114 7561Google Scholar

    [6]

    Park J, Kim K, Sagawa T, Kim S 2013 Phys. Rev. Lett. 111 230402Google Scholar

    [7]

    Paneru G, Lee D, Tlusty T, Pak H 2018 Phys. Rev. Lett. 120 020601Google Scholar

    [8]

    Dong H, Xu D Z, Cai C Y, Sun C P 2011 Phys. Rev. E 83 061108Google Scholar

    [9]

    Cai C Y, Dong H, Sun C P 2012 Phys. Rev. E 85 031114Google Scholar

    [10]

    Toyabe S, Sagawa T, Ueda M, Muneyuki E, Sano M 2010 Nat. Phys. 6 988Google Scholar

    [11]

    Lebedev A V, Lesovik G B, Vinokur V M, Blatter G 2018 Phys. Rev. B 98 214502Google Scholar

    [12]

    Naghiloo M, Alonso J J, Romito A, Lutz E, Murch K W 2018 Phys. Rev. Lett. 121 030604Google Scholar

    [13]

    Schaller G, Cerrillo J, Engelhardt G, Strasberg P 2018 Phys. Rev. B 97 195104Google Scholar

    [14]

    Jacobs K 2009 Phys. Rev. A 80 012322Google Scholar

    [15]

    Granger L, Kantz H 2011 Phys. Rev. E 84 061110Google Scholar

    [16]

    Sagawa T, Ueda M 2008 Phys. Rev. Lett. 100 080403Google Scholar

    [17]

    Koch-Janusz M, Ringel Z 2018 Nat. Phys. 14 578Google Scholar

    [18]

    Mehta P, Lang A H, Schwab D J 2016 J. Stat. Phys. 162 1153Google Scholar

    [19]

    Ito S, Sagawa T 2015 Nat. Commun. 6 7498Google Scholar

    [20]

    Barato A C, Hartich D, Seifert U 2014 New J. Phys. 16 103024Google Scholar

    [21]

    Mehta P, Schwab D J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 17978Google Scholar

    [22]

    李唯, 符婧, 杨贇贇, 何济洲 2019 物理学报 68 220501Google Scholar

    Li W, Fu J, Yang Y Y, He J Z 2019 Acta Phys. Sin. 68 220501Google Scholar

    [23]

    何弦, 何济洲, 肖宇玲 2012 物理学报 61 150302Google Scholar

    He X, He J Z, Xiao Y L 2012 Acta Phys. Sin. 61 150302Google Scholar

    [24]

    Horowitz J M, Esposito M 2014 Phys. Rev. X 4 031015

    [25]

    Barato A C, Hartich D, Seifert U 2014 New Journal of Physics 16 103024

    [26]

    Yamamoto S, Ito S, Shiraishi N, Sagawa T 2016 Phys. Rev. E 94 052121

    [27]

    Ptaszyński K, Esposito M 2019 Phys. Rev. Lett. 122 150603Google Scholar

    [28]

    Strasberg P, Schaller G, Brandes T, Esposito M 2017 Phys. Rev. X 7 021003

    [29]

    Schnakenberg J 1976 Rev. Mod. Phys. 48 571Google Scholar

    [30]

    Breuer H P, Petruccione F 2001 The Theory of Open Quantum Systems (Oxford: Oxford University Press) pp110–149

    [31]

    Schaller G 2014 Open Quantum Systems Far from Equilibrium (New York: Springer) pp73–74

    [32]

    Spohn H 1978 J. Math. Phys. 19 1227Google Scholar

    [33]

    Esposito M, Harbola U, Mukamel S 2009 Rev. Mod. Phys. 81 1665Google Scholar

    [34]

    Thulasiraman K, Swamy M N S 1997 Graphs: Theory and Algorithms (New York: John Wiley & Sons) pp1–26

    [35]

    Sagawa T, Ueda M 2013 New J. Phys. 15 125012Google Scholar

    [36]

    Bauer M, Abreu D, Seifert U 2012 J. Phys. A: Math. Theor. 45 162001Google Scholar

    [37]

    Ito S, Sagawa T 2013 Phys. Rev. Lett. 111 180603Google Scholar

  • [1] 郭威, 杨德森. 非均匀波导中的最大声能流透射及鲁棒性分析. 物理学报, 2021, 70(17): 174302. doi: 10.7498/aps.70.20210495
    [2] 蓝康, 杜倩, 康丽莎, 姜露静, 林振宇, 张延惠. 基于量子点接触的开放双量子点系统电子转移特性. 物理学报, 2020, 69(4): 040504. doi: 10.7498/aps.69.20191718
    [3] 吴联仁, 李瑾颉, 齐佳音. 一种基于分支过程的信息流行度动力学模型. 物理学报, 2019, 68(7): 078901. doi: 10.7498/aps.68.20181948
    [4] 郑军, 李春雷, 杨曦, 郭永. 四端双量子点系统中的自旋和电荷能斯特效应. 物理学报, 2017, 66(9): 097302. doi: 10.7498/aps.66.097302
    [5] 吴绍全, 方栋开, 赵国平. 电子关联效应对平行双量子点系统磁输运性质的影响. 物理学报, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [6] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输. 物理学报, 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [7] 邢修三. 论动态信息理论. 物理学报, 2014, 63(23): 230201. doi: 10.7498/aps.63.230201
    [8] 栗军, 刘玉, 平婧, 叶银, 李新奇. 双量子点Aharonov-Bohm干涉系统输运性质的大偏离分析. 物理学报, 2012, 61(13): 137202. doi: 10.7498/aps.61.137202
    [9] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究. 物理学报, 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [10] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [11] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [12] 孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩. 温度梯度对平面金壁发射能流平衡性的影响. 物理学报, 2011, 60(2): 025210. doi: 10.7498/aps.60.025210
    [13] 谌雄文, 谌宝菊, 施振刚, 宋克慧. 嵌入T型耦合双量子点介观A-B环系统的显著Fano 效应. 物理学报, 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [14] 杨 雄, 童朝阳, 匡乐满. 利用双光子过程实现量子信息转移. 物理学报, 2008, 57(3): 1689-1692. doi: 10.7498/aps.57.1689
    [15] 谌雄文, 施振刚, 谌宝菊, 宋克慧. T型耦合双量子点系统的非对等Kondo共振分裂传输. 物理学报, 2008, 57(4): 2421-2426. doi: 10.7498/aps.57.2421
    [16] 吴绍全, 何 忠, 阎从华, 谌雄文, 孙威立. 嵌入并联耦合双量子点介观环系统中的近藤效应. 物理学报, 2006, 55(3): 1413-1418. doi: 10.7498/aps.55.1413
    [17] 蓝 可, 贺贤土, 赖东显, 李双贵. 柱输运管中扩散超声速辐射波的能流. 物理学报, 2006, 55(7): 3789-3795. doi: 10.7498/aps.55.3789
    [18] 林子扬, 付 哲, 刘立新, 胡 涛, 屈军乐, 郭宝平, 牛憨笨. 双光子阵列点激发同时多维荧光信息的处理. 物理学报, 2006, 55(12): 6701-6707. doi: 10.7498/aps.55.6701
    [19] 王立民, 罗莹, 马本堃. 双量子点分子的电子结构. 物理学报, 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
    [20] 徐章程, 郭常霖, 赵宗彦, 周圣明, 深町共荣, 根岸利一郎. 原子吸收限附近完整晶体内的能流方向. 物理学报, 1997, 46(11): 2188-2197. doi: 10.7498/aps.46.2188
计量
  • 文章访问数:  7578
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-12
  • 修回日期:  2020-04-24
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回