搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

keV能量电子致Al, Ti, Zr, W, Au元素厚靶特征X射线产额与截面的研究

李颖涵 安竹 朱敬军 李玲

引用本文:
Citation:

keV能量电子致Al, Ti, Zr, W, Au元素厚靶特征X射线产额与截面的研究

李颖涵, 安竹, 朱敬军, 李玲

Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact

Li Ying-Han, An Zhu, Zhu Jing-Jun, Li Ling
PDF
HTML
导出引用
  • 本文使用5—27 keV能量范围的电子轰击纯厚Al (Z = 13), Ti (Z = 22), Zr (Z = 40), W (Z = 74)和Au (Z =79)靶, 利用硅漂移探测器(SDD)收集产生的X射线, 给出了K, L壳层特征X射线产额的测量结果, 并将所得实验数据与基于扭曲波玻恩近似理论模型(DWBA)的蒙特卡罗模拟值进行了比较, 两者在小于或约为10%的范围内符合. 根据测得的特征X射线产额进一步得到了相应的内壳层电离截面或特征X射线产生截面. 通过对比电子入射角度为45°和90°的两种情况下解析模型与蒙特卡罗模拟的特征X射线产额, 发现在入射角度为90°时两者符合较好. 同时, 本文还给出了次级电子、轫致辐射光子对特征X射线产额的贡献, 该贡献与入射电子能量关系较弱, 表现出与原子序数较密切的相关性.
    In this paper, pure thick Al (Z = 13), Ti (Z = 22), Zr (Z = 40), W (Z = 74) and Au (Z = 79) targets are bombarded by electrons in an energy range of 5–27 keV, and the experimental thick-target characteristic X-ray yields of K-shell and L-shell, the X-ray production cross sections and the ionization cross sections of inner shells are presented. The present experimental setup and data processing are improved, specifically, a deflection magnet is installed in front of the X-ray detector to prevent the backscattered electron from entering into the X-ray detector, and the bremsstrahlung background spectra calculated from PENELOPE Monte Carlo simulations are used to deduce the net peak areas. The X-ray detector used in this experiment is the XR-100SDD manufactured by Amptek Inc. with a 25 mm2 C2 ultra-thin window which can detect the low-energy x-rays down to boron Kα line (0.183 keV). Standard sources (55Fe, 57Co, 137Cs and 241Am) with an activity accuracy range of 1%–3% (k = 2), supplied by the Physikalisch-Technische Bundesanstalt, Germany (PTB), are used to perform the detector’s efficiency calibration, and in a low-energy range (< 3.3 keV) the efficiency calibration is accomplished by measuring characteristic X-ray spectra produced by 20 keV electron impacting various thickness solid targets (i.e. by the characteristic peak method). The uncertainty of the detector’s efficiency calibration obtained in this paper is ~1.6%. The experimental thick-target characteristic X-ray yield data with an uncertainty of 1.7%–6.2% are compared with the PENELOPE Monte Carlo simulations, in which the inner-shell ionization cross sections are based on the distorted-wave Born approximation (DWBA) calculations, and they are in good agreement with a difference of less than or ~10%. According to the measured thick-target characteristic x-ray yields, the K-shell ionization cross sections for Al, Ti and Zr and the L-shell X-ray production cross sections for Zr, W and Au are also obtained with an uncertainty of 5%–8% (except for Al due to large K-shell fluorescence yield uncertainty), the difference between the experimental and theoretical data is also less than or ~10%. Moreover, by comparing the thick-target characteristic X-ray yields obtained from the analytical model and the PENELOPE Monte Carlo simulations at the electrons’ incident angles of 45° and 90°, it is found that the degree of agreement between the results from the analytical model and the Monte Carlo simulations at the incident angle of 90° is better than at the incident angle of 45°. Moreover, the contributions of the secondary electrons and bremsstrahlung photons to the characteristic X-ray yield are also given based on the PENELOPE Monte Carlo simulations. As for the elements studied in this paper, for the low ionization threshold energy, the contribution of the secondary electrons is ~2%, and however, for the high ionization threshold energy, the contribution is ~10%–20%. These contributions depend weakly on the energy of the incident electrons and show that these contributions are closely correlated with atomic number.
      通信作者: 安竹, anzhu@scu.edu.cn
    • 基金项目: 其它-中国工程物理研究院核物理与化学研究所资助课题(19H0746)
      Corresponding author: An Zhu, anzhu@scu.edu.cn
    [1]

    Powell C J 1976 Rev. Mod. Phys. 48 33Google Scholar

    [2]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank) pp1−324

    [3]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

    [4]

    An Z, Liu M T, Fu Y C, Luo Z M, Tang C H, Li C M, Zhang B H, Tang Y J 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 207 268Google Scholar

    [5]

    Wu Y, Wang G Y, Mu Q, Zhao Q 2014 Chin. Phys. B 23 013401Google Scholar

    [6]

    Pérez P D, Sepúlveda A, Castellano G, Trincavelli J 2015 Phys. Rev. A 92 062708Google Scholar

    [7]

    Limandri S P, Vasconcellos M A Z, Hinrichs R, Trincavelli J C 2012 Phys. Rev. A 86 042701Google Scholar

    [8]

    An Z, Luo Z M, Tang C 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 334Google Scholar

    [9]

    Khare S P, Wadehra J M 1996 Can. J. Phys. 74 376

    [10]

    Keller S, Whelan C T, Ast H, Walters H R J, Dreizler R M 1994 Phys. Rev. A 50 3865Google Scholar

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710Google Scholar

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711Google Scholar

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701Google Scholar

    [14]

    Long X G, Liu M T, Ho F Q, Peng X F 1990 At. Data Nucl. Data Tables 45 353Google Scholar

    [15]

    Liu M T, An Z, Tang C H, Luo Z M, Peng X F, Long X G 2000 At. Data Nucl. Data Tables 76 213Google Scholar

    [16]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B: At. Mol. Opt. Phys. 29 4001Google Scholar

    [17]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067Google Scholar

    [18]

    Wu Y, An Z, Duan Y M, Liu M T 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 2473Google Scholar

    [19]

    Fernandez-Varea J M, Jahnke V, Maidana N L, Malafronte A A, Vanin V R 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155201Google Scholar

    [20]

    Campos C S, Vasconcellos M A Z, Trincavelli J C, Segui S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3835Google Scholar

    [21]

    Hombourger C 1998 J. Phys. B: At. Mol. Opt. Phys. 31 3693Google Scholar

    [22]

    An Z, Wu Y, Liu M T, Duan Y M, Tang C H 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 246 281Google Scholar

    [23]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702Google Scholar

    [24]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47Google Scholar

    [25]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D: Appl. Phys. 41 105304Google Scholar

    [26]

    Li X L, Zhao J L, Tian L X, An Z, Zhu J J, Liu M T 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 333 106Google Scholar

    [27]

    Zhang W G, Sun H W, Zeng F Y, Mao L, Wu Q Q, Zhu J J, An Z 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 275 20Google Scholar

    [28]

    黄郁旋, 毛莉, 丁伟, 安竹 2016 原子核物理评论 33 45Google Scholar

    Huang Y X, Mao L, Ding W, An Z 2016 Nucl. Phys. Rev. 33 45Google Scholar

    [29]

    Lee S E, Hatano Y, Hara M, Matsuyama M 2020 Fusion Sci. Technol. (DOI: 10.1080/15361055.2020.1711855)

    [30]

    Yadav N, Bhatt P, Singh R, Llovet X, Shanker R 2012 J. Electron. Spectrosc. Relat. Phenom. 185 23Google Scholar

    [31]

    Yadav N, Kumar S, Bhatt P, Singh R, Singh B K, Shanker R 2012 J. Electron. Spectrosc. Relat. Phenom. 185 448Google Scholar

    [32]

    Rubel M, Coad J P, Likonen J, Philipps V 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 711Google Scholar

    [33]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065205Google Scholar

    [34]

    Li L, An Z, Zhu J, Tan W, Sun Q, Liu M 2019 Phys. Rev. A 99 052701Google Scholar

    [35]

    Uzonyi I, Szabó G, Borbély-Kiss I, Kiss Á Z 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 210 147Google Scholar

    [36]

    Shima K, Okuda M, Suzuki E, Tsubota T and Mikumo T 1983 J. Appl. Phys. 54 1202

    [37]

    An Z, Hou Q 2008 Phys. Rev. A 77 042702Google Scholar

    [38]

    Omar A, Andreo P, Poludniowski G 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 437 36Google Scholar

    [39]

    Hubbell J H, Trehan P N, Singh N, Chand B, Garg M L, Garg R R, Singh S, Puri S, Mehta D 1994 J. Phys. Chem. Ref. Data 23 339Google Scholar

  • 图 1  (a)实验装置示意图; (b)装置照片

    Fig. 1.  (a)The schematic of experimental setup; (b) photograph of experimental setup.

    图 2  SDD探测器效率刻度曲线. 空心圆表示Al, Ti, Zr, W和Au的特征X射线位置, 实线表示根据探测器参数计算的效率值

    Fig. 2.  The X-ray detection efficiency of the SSD detector. The positions of the characteristic X-ray lines for Al, Ti, Zr, W and Au are indicated by the open circles. The solid line represents the theoretical values calculated based on the detector’s parameters.

    图 3  27 keV电子入射厚W靶碰撞产生的实验谱(实线)与PENELOP模拟的轫致辐射本底谱(虚线)

    Fig. 3.  The experimental spectrum (solid line) and the bremsstrahlung background spectrum simulated by PENELOPE (dashed line) produced by 27 keV electron impact on thick W target.

    图 4  PENELLOPE模拟几何模型示意图

    Fig. 4.  The geometry used in the PENELOPE simulations.

    图 5  实心圆点表示实验测得不同入射电子能量下的厚靶特征X射线产额, 实线代表相应的蒙特卡罗模拟值, 虚线为蒙特卡罗模拟值归一到实验数据值上的结果, 括号内为归一化参数, 缩略图为实验布局示意图

    Fig. 5.  Solid circles denote the experimental characteristic X-ray yields of thick targets at different incident electron energies. Solid curves represent the results of Monte Carlo simulations using the PENELOPE code. Dashed curves are the scaled results of Monte Carlo simulations by scaling factors that are given in parentheses. The insets show the schematic of experimental geometry.

    图 6  α = 45°, β = 45°时由PENELOPE计算的特征X射线产额(实心圆点), 其中来自初级电子电离贡献表示为空心圆形, 次级电子电离贡献表示为空心三角形, 轫致辐射光子贡献为空心方形. 实线为方程(2)计算所得结果. 缩略图为计算几何示意图

    Fig. 6.  In the case of α = 45°, β = 45°, the solid dots represent the total characteristic X-ray yields calculated by PENELOPE, which include the contributions from the primary electron ionization (hollow circles), secondary electron ionization(hollow triangles) and bremsstrahlung photon ionization (hollow squares). The solid lines are the characteristic X-ray yields calculated by Eq. (2). The insets show the schematic of calculation geometry.

    图 7  α = 0°, β = 45°时由PENELOPE计算的特征X射线产额(实心圆点), 其中来自初级电子电离贡献表示为空心圆形, 次级电子电离贡献表示为空心三角形, 轫致辐射光子贡献为空心方形. 实线为方程(2)计算所得结果. 缩略图为计算几何示意图

    Fig. 7.  In the case of α = 45°, β = 45°, the solid dots represent the total characteristic X-ray yields calculated by PENELOPE, which include the contributions from the primary electron ionization (hollow circles), secondary electron ionization(hollow triangles) and bremsstrahlung photon ionization (hollow squares). The solid lines are the characteristic X-ray yields calculated by Eq. (2). The insets show the schematic of calculation geometry.

    图 8  (a) Al, (b) Ti, (c) Zr元素实验K壳电离截面(实线)与DWBA理论值(虚线), 括号内为修正系数

    Fig. 8.  Experimental K-shell ionization cross sections of (a) Al, (b) Ti, (c) Zr (solid lines) and the DWBA theoretical values (dashed lines). The scaling factors are given in parentheses.

    图 9  (a) Zr, (b)−(d) W, (e)−(g) Au元素实验L壳特征X射线产生截面(实线)与DWBA理论值(虚线), 括号内为修正系数

    Fig. 9.  Experimental L-shell characteristic X-ray production cross sections of (a) Zr, (b)−(d) W, (e)−(g) Au (solid lines) and the DWBA theoretical values (dashed lines). The scaling factors are given in parentheses.

  • [1]

    Powell C J 1976 Rev. Mod. Phys. 48 33Google Scholar

    [2]

    Salvat F, Fernández-Varea J, Sempau J 2008 PENELOPE-2008, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Issy-les-Moulineau: OECD/NEA Data Bank) pp1−324

    [3]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102Google Scholar

    [4]

    An Z, Liu M T, Fu Y C, Luo Z M, Tang C H, Li C M, Zhang B H, Tang Y J 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 207 268Google Scholar

    [5]

    Wu Y, Wang G Y, Mu Q, Zhao Q 2014 Chin. Phys. B 23 013401Google Scholar

    [6]

    Pérez P D, Sepúlveda A, Castellano G, Trincavelli J 2015 Phys. Rev. A 92 062708Google Scholar

    [7]

    Limandri S P, Vasconcellos M A Z, Hinrichs R, Trincavelli J C 2012 Phys. Rev. A 86 042701Google Scholar

    [8]

    An Z, Luo Z M, Tang C 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 334Google Scholar

    [9]

    Khare S P, Wadehra J M 1996 Can. J. Phys. 74 376

    [10]

    Keller S, Whelan C T, Ast H, Walters H R J, Dreizler R M 1994 Phys. Rev. A 50 3865Google Scholar

    [11]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710Google Scholar

    [12]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711Google Scholar

    [13]

    Bote D, Salvat F 2008 Phys. Rev. A 77 042701Google Scholar

    [14]

    Long X G, Liu M T, Ho F Q, Peng X F 1990 At. Data Nucl. Data Tables 45 353Google Scholar

    [15]

    Liu M T, An Z, Tang C H, Luo Z M, Peng X F, Long X G 2000 At. Data Nucl. Data Tables 76 213Google Scholar

    [16]

    Luo Z M, An Z, He F Q, Li T H, Long X G, Peng X F 1996 J. Phys. B: At. Mol. Opt. Phys. 29 4001Google Scholar

    [17]

    An Z, Li T H, Wang L M, Xia X Y, Luo Z M 1996 Phys. Rev. A 54 3067Google Scholar

    [18]

    Wu Y, An Z, Duan Y M, Liu M T 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 2473Google Scholar

    [19]

    Fernandez-Varea J M, Jahnke V, Maidana N L, Malafronte A A, Vanin V R 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155201Google Scholar

    [20]

    Campos C S, Vasconcellos M A Z, Trincavelli J C, Segui S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3835Google Scholar

    [21]

    Hombourger C 1998 J. Phys. B: At. Mol. Opt. Phys. 31 3693Google Scholar

    [22]

    An Z, Wu Y, Liu M T, Duan Y M, Tang C H 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 246 281Google Scholar

    [23]

    Wu Y, Liang Y, Xu M X, Yuan Y, Chang C H, Qian Z C, Wang B Y, Kuang P, Zhang P 2018 Phys. Rev. A 97 032702Google Scholar

    [24]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47Google Scholar

    [25]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D: Appl. Phys. 41 105304Google Scholar

    [26]

    Li X L, Zhao J L, Tian L X, An Z, Zhu J J, Liu M T 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 333 106Google Scholar

    [27]

    Zhang W G, Sun H W, Zeng F Y, Mao L, Wu Q Q, Zhu J J, An Z 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 275 20Google Scholar

    [28]

    黄郁旋, 毛莉, 丁伟, 安竹 2016 原子核物理评论 33 45Google Scholar

    Huang Y X, Mao L, Ding W, An Z 2016 Nucl. Phys. Rev. 33 45Google Scholar

    [29]

    Lee S E, Hatano Y, Hara M, Matsuyama M 2020 Fusion Sci. Technol. (DOI: 10.1080/15361055.2020.1711855)

    [30]

    Yadav N, Bhatt P, Singh R, Llovet X, Shanker R 2012 J. Electron. Spectrosc. Relat. Phenom. 185 23Google Scholar

    [31]

    Yadav N, Kumar S, Bhatt P, Singh R, Singh B K, Shanker R 2012 J. Electron. Spectrosc. Relat. Phenom. 185 448Google Scholar

    [32]

    Rubel M, Coad J P, Likonen J, Philipps V 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 711Google Scholar

    [33]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 065205Google Scholar

    [34]

    Li L, An Z, Zhu J, Tan W, Sun Q, Liu M 2019 Phys. Rev. A 99 052701Google Scholar

    [35]

    Uzonyi I, Szabó G, Borbély-Kiss I, Kiss Á Z 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 210 147Google Scholar

    [36]

    Shima K, Okuda M, Suzuki E, Tsubota T and Mikumo T 1983 J. Appl. Phys. 54 1202

    [37]

    An Z, Hou Q 2008 Phys. Rev. A 77 042702Google Scholar

    [38]

    Omar A, Andreo P, Poludniowski G 2018 Nucl. Instrum. Methods Phys. Res., Sect. B 437 36Google Scholar

    [39]

    Hubbell J H, Trehan P N, Singh N, Chand B, Garg M L, Garg R R, Singh S, Puri S, Mehta D 1994 J. Phys. Chem. Ref. Data 23 339Google Scholar

  • [1] 寻之朋, 郝大鹏. 含复杂近邻的二维正方格子键渗流的蒙特卡罗模拟. 物理学报, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [4] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [5] 王国强, 张烁, 杨俊元, 许小可. 耦合不同年龄层接触模式的新冠肺炎传播模型. 物理学报, 2021, 70(1): 010201. doi: 10.7498/aps.70.20201371
    [6] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [7] 田自宁, 欧阳晓平, 陈伟, 王雪梅, 邓宁, 刘文彪, 田言杰. 基于虚拟源原理的源边界参数蒙特卡罗反演技术. 物理学报, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [8] 钱宇瑞, 吴英, 杨夏童, 陈秋香, 尤俊栋, 王宝义, 况鹏, 张鹏. 8-9.5 keV正电子致Ti的K壳层电离截面的实验研究. 物理学报, 2018, 67(19): 192101. doi: 10.7498/aps.67.20180666
    [9] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [10] 羊奕伟, 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫铀球壳中D-T中子诱发的铀反应率的测量与分析. 物理学报, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [11] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [12] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [13] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究. 物理学报, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [15] 熊开国, 封国林, 胡经国, 万仕全, 杨杰. 气候变化中高温破纪录事件的蒙特卡罗模拟研究. 物理学报, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
计量
  • 文章访问数:  11921
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-23
  • 修回日期:  2020-04-07
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回