搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性材料的磁结构、磁畴结构和拓扑磁结构

张志东

引用本文:
Citation:

磁性材料的磁结构、磁畴结构和拓扑磁结构

张志东

Magnetic structures, magnetic domains and topological magnetic textures of magnetic materials

Zhang Zhi-Dong
PDF
导出引用
  • 首先简要地介绍了磁性材料中磁结构、磁畴结构和拓扑磁结构以及相互之间的关系. 一方面, 磁畴结构由材料的磁结构、内禀磁性和微结构因素决定; 另一方面, 磁畴结构决定了材料磁化和退磁化过程以及技术磁性. 拓扑学与材料物理、材料性能的联系越来越紧密. 最近的研究兴趣集中在一些拓扑磁性组态, 如涡旋、磁泡、麦纫、斯格米子等. 研究发现这些拓扑磁结构的拓扑性质与磁性能密切相关. 然后从尺寸效应、缺陷、晶界三个方面介绍国际学术界在磁结构、磁畴结构和拓扑磁结构方面的进展. 最后介绍了在稀土永磁薄膜材料的微观结构、磁畴结构和磁性能关系、交换耦合纳米盘中的拓扑磁结构及其动力学行为方面的工作. 通过对文献的评述, 得到以下结论: 开展各向异性纳米复合稀土永磁材料的研究对更好地利用稀土资源具有重要的意义. 可以有目的地改变材料的微结构, 可控地进行磁性材料的磁畴工程, 最终获得优秀的磁性能. 拓扑学的概念正在应用于越来越多的学科领域, 在越来越多的材料中发现拓扑学的贡献. 研究磁畴结构、拓扑磁性基态或者激发态的形成规律以及动力学行为对理解量子拓扑相变以及其他与拓扑相关的物理效应是十分重要的. 也会帮助理解不同拓扑学态之间相互作用的物理机制及其与磁性能之间的关系, 同时拓展拓扑学在新型磁性材料中的应用.
    This article first gives a brief review of magnetic structures, magnetic domains and topological magnetic textures and their relations. On the one hand, the magnetic domains are determined by the magnetic structures, the intrinsic magnetic properties and the micro-structural factors of a material. On the other hand, the magnetic domains could control the magnetization and demagnetization processes and also the technical magnetic properties of a material. Topology is found to have a close relation with physical properties of material. Recent interest has focused on topological magnetic textures, such as vortex, bubble, meron, skyrmion, and it has been found that the topological behaviors of these topological textures are closely related with magnetic properties of a material. Then this article introduces recent advances in magnetic structures, magnetic domains and topological magnetic textures, from views of the size effect, defects and interfaces. Finally, this article reviews briefly some results of investigation on the relations between microstructures, magnetic domains and magnetic properties of rare-earth permanent magnetic thin films, the topological magnetic textures and their dynamic behaviors of exchange coupled nanodisks. It has been concluded from the reviews on the literature that the investigation on anisotropic exchange-coupled rare-earth permanent magnets with high performance benefits the high efficient utilization of rare-earth resources. One could achieve optimal magnetic properties through magnetic domain engineering by adjusting the microstructures of magnetic materials. The concepts of topology is applied to various research fields, while the contributions from topological behaviors to physical properties are discovered in different materials. The researches on magnetic domains, topological magnetic ground state and excitation states and their dynamic behaviors are very important for a better understanding of quantum topological phase transitions and other topological relevant phenomena. It can be quite helpful for understanding the correlation between different topological states and their relationship with magnetic properties of a material, and also it will definitely contribute to the applications in various fields of magnetic materials.
    • 基金项目: 国家自然科学基金(批准号: 51331006)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51331006).
    [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]

    Berry M V 1984 Proc. Roy. Soc. A 392 45

    [3]

    Josephson B D 1962 Phys. Lett. 1 251

    [4]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494.

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395

    [7]

    de Haas W J, van Alphen P M 1930 Koninklijke Akademie Wetenschappen Amsterdam 33 1106

    [8]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D, Cheong S W 2010 Nature Mater. 9 253

    [9]

    Dai Y Y 2015 Ph. D. Dissertation (Shenyang: University of Chinese Academy of Sciences) (in Chinese) [代莹莹 2015 博士学位论文(沈阳: 中国科学院大学)]

    [10]

    de Alfaro V, Fubini S, Furlan G 1976 Phys. Lett. B 65 163

    [11]

    Phatak C, Petford-Long A K, Heinonen O 2012 Phys. Rev. Lett. 108 067205

    [12]

    Wintz S, Bunce C, Neudert A, Körner M, Strache T, Buhl M, Erbe A, Gemming S, Raabe J, Quitmann C, Fassbender J 2013 Phys. Rev. Lett. 110 177201

    [13]

    Malozemoff A P, Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York: Academic)

    [14]

    O'dell T H 1981 Ferromagnetodynamics: The Dynamics of Magnetic Bubbles, Domains, and Domain Walls (New York: Wiley)

    [15]

    Moutafis C, Komineas S, Bland J A C 2009 Phys. Rev. B 79 224429

    [16]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [17]

    Everschor K 2012 Ph. D. Dissertation (Köln: Köln University)

    [18]

    Baltz V, Sort J, Landis S, Rodmacq B, Dieny B 2005 Phys. Rev. Lett. 94 117201

    [19]

    Kawagoe T, Suzuki Y, Nývlt M, Franta J, Hosoito N 2001 Surface Science 493 721

    [20]

    Bolte M, Steiner M, Pels C, Barthelmeß M, Kruse J, Merkt U, Meier G, Holz M, Pfannkuche D 2005 Phys. Rev. B 72 224436

    [21]

    Portmann O, Vaterlaus A, Pescia D 2003 Nature 422 701

    [22]

    Hsieh C T, Liu J Q, Lue J T 2005 Appl. Surface Sci. 252 1899

    [23]

    Chuang V P, Jung W, Ross C A, Cheng J Y, Park O H, Kim H C 2008 J. Appl. Phys. 103 074307

    [24]

    Heyderman L J, Nolting F, Backes D, Czekaj S, Lopez-Diaz L, Kläui M, Rdiger U, Vaz C A F, Bland J A C, Matelon R J, Volkmann U G, Fischer P 2006 Phys. Rev. B 73 214429

    [25]

    Leven B, Dumpich G 2005 Phys. Rev. B 71 064411

    [26]

    Nielsch K, Wehrspohn R B, Barthel J, Kirschner J, Gösele U, Fischer S F, Kronmller H 2001 Appl. Phys. Lett. 79 1360

    [27]

    Escrig J, Bachmann J, Jing J, Daub M, Altbir D, Nielsch K 2008 Phys. Rev. B 77 214421

    [28]

    Kirk K J, McVitie S, Chapman J N, Wilkinson C D W 2001 J. Appl. Phys. 89 7174

    [29]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [30]

    Kasai S, Nakatani Y, Kobayashi K, Kohno H, Ono T 2006 Phys. Rev. Lett. 97 107204

    [31]

    Novosad V, Fradin F Y, Roy P E, Buchanan K S, Guslienko K Y, Bader S D 2005 Phys. Rev. B 72 024455

    [32]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503

    [33]

    Vaz C A, Kläui F M, Heyderman L J, David C, Nolting F, Bland J A C 2005 Phys. Rev. B 72 224426

    [34]

    Jamali M, Narayanapillai K, Kwon J H, Yang H S 2012 Appl. Phys. Lett. 101 062401

    [35]

    Moutafis C, Komineas S, Vaz C A F, Bland J A C, Shima T, Seki T, Takanashi K 2007 Phys. Rev. B 76 104426

    [36]

    Yu X Z, DeGrave J P, Hara Y, Hara T, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [37]

    Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401

    [38]

    Kanda A, Suzuki A, Matsukura F, Ohno H 2010 Appl. Phys. Lett. 97 032504

    [39]

    Song Y L, Hua L 2012 J. Mater. Sci. Technol. 28 803

    [40]

    Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, Leclair P R, Santos T S, Moodera J S 2006 Nat. Mater. 5 298

    [41]

    Keller J, Miltényí P, Beschoten B, Gntherodt G, Nowak U, Usadel K D 2002 Phys. Rev. B 66 014431

    [42]

    Krusin-Elbaum L, Shibauchi T, Argyle B, Gignac L, Weller D 2001 Nature 410 444

    [43]

    Uchida M, Onose Y, Matsui Y, Tokura Y 2006 Science 311 359

    [44]

    Inada Y, Akase Z, Shindo D, Taniyama A 2012 Mater. Trans. 53 1330

    [45]

    Kunz A 2009 Appl. Phys. Lett. 94 132502

    [46]

    Compton R L, Chen T Y, Crowell P A 2010 Phys. Rev. B 81 144412

    [47]

    Garcia-Sanchez F, Szambolics H, Mihai A P, Vila L, Marty A, Attané J P, Toussaint J C, Buda-Prejbeanu L D 2010 Phys. Rev. B 81 134408

    [48]

    Shin S, Schäfer R, de Cooman B C 2010 IEEE Trans. Mag. 46 3574.

    [49]

    Löffler J F, Braun H B, Wagner W 2000 Phys. Rev. Lett. 85 1990

    [50]

    O'Grady K, Fernandez-Outon L E, Vallejo-Fernandez G 2010 J. Magn. Magn. Mater. 322 883

    [51]

    Anglada-Rivera J, Padovese L R, Capó-Sánchez J 2001 J. Magn. Magn. Mater. 231 299

    [52]

    Thevenard L, Largeau L, Manguin O, Patriarche G, Lemaître A, Vernier N, Ferré J 2006 Phys. Rev. B 73 195331

    [53]

    Seo J, Oh Y, Kim T H, Kuk Y 2011 Appl. Phys. Lett. 99 182501

    [54]

    Pierce M S, Davies J E, Turner J J, Chesnel K, Fullerton E E, Nam J, Hailstone R, Kevan S D, Kortright J B, Liu K, Sorensen L B, York B R, Willwig O 2013 Phys. Rev. B 87 184428

    [55]

    Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102

    [56]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [57]

    Chen S L, Liu W, Chen C L, Zhang Z D 2005 J. Appl. Phys. 98 033907

    [58]

    Chen S L, Liu W, Zhang Z D 2005 Phys. Rev. B 72 224419

    [59]

    Chen S L, Zheng J G, Liu W, Zhang Z D 2007 J. Phys. D 40 1816

    [60]

    Chen S L, Liu W, Zhang Z D, Gunaratne G H 2008 J. Appl. Phys. 103 023922

    [61]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [62]

    Cui W B, Zheng S J, Liu W, Ma X L, Fang Y, Yao Q, Zhao X G, Zhang Z D 2008 J. Appl. Phys. 104 053903

    [63]

    Yao Q, Liu W, Cui W B, Yang F, Zhao X G, Zhang Z D 2009 J. Phys. D.: Appl. Phys. 42 035007

    [64]

    Cui W B Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530; Correction 2013 Adv. Mater. 25 1966

    [65]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [66]

    Dai Y Y, Wang H, Yang T, Ren W J, Zhang Z D 2014 Scientific Report 4 6153

    [67]

    Wang H, Dai Y Y, Yang T, Ren W J, Zhang Z D 2014 RSC Adv. 4 62179

    [68]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [69]

    Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese) [夏静, 张溪超, 赵国平 2013 物理学报 62 227502]

    [70]

    Kim J V, Carcia-Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V, Fert A 2014 Phys. Rev. B 90 064410

    [71]

    Peng Y, Zhao G P, Wu S Q, Si W J, Wan X L 2014 Acta Phys. Sin. 63 167505 (in Chinese) [彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳 2014 物理学报 63 167505]

    [72]

    Moon K W, Chun B S, Kim W, Qiu Z Q, Huang C 2014 Phys. Rev. B 89 064413

    [73]

    Li Z H, Li X 2014 Acta Phys. Sin. 63 178503 (in Chinese) [李正华, 李翔 2014 物理学报 63 178503]

    [74]

    Wang R, Zheng F, Luo F L, Lou Y F, Wang Y, Cao J W, Bai J M, Wei F L, Kamzin A S 2013 Acta Phys. Sin. 62 217503 (in Chinese) [王锐, 郑富, 罗飞龙, 娄元付, 王颖, 曹江伟, 白建民, 魏福林, 阿谢卡姆津 2013 物理学报 62 217503]

  • [1]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485

    [2]

    Berry M V 1984 Proc. Roy. Soc. A 392 45

    [3]

    Josephson B D 1962 Phys. Lett. 1 251

    [4]

    von Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494.

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559

    [6]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395

    [7]

    de Haas W J, van Alphen P M 1930 Koninklijke Akademie Wetenschappen Amsterdam 33 1106

    [8]

    Choi T, Horibe Y, Yi H T, Choi Y J, Wu W D, Cheong S W 2010 Nature Mater. 9 253

    [9]

    Dai Y Y 2015 Ph. D. Dissertation (Shenyang: University of Chinese Academy of Sciences) (in Chinese) [代莹莹 2015 博士学位论文(沈阳: 中国科学院大学)]

    [10]

    de Alfaro V, Fubini S, Furlan G 1976 Phys. Lett. B 65 163

    [11]

    Phatak C, Petford-Long A K, Heinonen O 2012 Phys. Rev. Lett. 108 067205

    [12]

    Wintz S, Bunce C, Neudert A, Körner M, Strache T, Buhl M, Erbe A, Gemming S, Raabe J, Quitmann C, Fassbender J 2013 Phys. Rev. Lett. 110 177201

    [13]

    Malozemoff A P, Slonczewski J C 1979 Magnetic Domain Walls in Bubble Materials (New York: Academic)

    [14]

    O'dell T H 1981 Ferromagnetodynamics: The Dynamics of Magnetic Bubbles, Domains, and Domain Walls (New York: Wiley)

    [15]

    Moutafis C, Komineas S, Bland J A C 2009 Phys. Rev. B 79 224429

    [16]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [17]

    Everschor K 2012 Ph. D. Dissertation (Köln: Köln University)

    [18]

    Baltz V, Sort J, Landis S, Rodmacq B, Dieny B 2005 Phys. Rev. Lett. 94 117201

    [19]

    Kawagoe T, Suzuki Y, Nývlt M, Franta J, Hosoito N 2001 Surface Science 493 721

    [20]

    Bolte M, Steiner M, Pels C, Barthelmeß M, Kruse J, Merkt U, Meier G, Holz M, Pfannkuche D 2005 Phys. Rev. B 72 224436

    [21]

    Portmann O, Vaterlaus A, Pescia D 2003 Nature 422 701

    [22]

    Hsieh C T, Liu J Q, Lue J T 2005 Appl. Surface Sci. 252 1899

    [23]

    Chuang V P, Jung W, Ross C A, Cheng J Y, Park O H, Kim H C 2008 J. Appl. Phys. 103 074307

    [24]

    Heyderman L J, Nolting F, Backes D, Czekaj S, Lopez-Diaz L, Kläui M, Rdiger U, Vaz C A F, Bland J A C, Matelon R J, Volkmann U G, Fischer P 2006 Phys. Rev. B 73 214429

    [25]

    Leven B, Dumpich G 2005 Phys. Rev. B 71 064411

    [26]

    Nielsch K, Wehrspohn R B, Barthel J, Kirschner J, Gösele U, Fischer S F, Kronmller H 2001 Appl. Phys. Lett. 79 1360

    [27]

    Escrig J, Bachmann J, Jing J, Daub M, Altbir D, Nielsch K 2008 Phys. Rev. B 77 214421

    [28]

    Kirk K J, McVitie S, Chapman J N, Wilkinson C D W 2001 J. Appl. Phys. 89 7174

    [29]

    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T 2000 Science 289 930

    [30]

    Kasai S, Nakatani Y, Kobayashi K, Kohno H, Ono T 2006 Phys. Rev. Lett. 97 107204

    [31]

    Novosad V, Fradin F Y, Roy P E, Buchanan K S, Guslienko K Y, Bader S D 2005 Phys. Rev. B 72 024455

    [32]

    Yakata S, Miyata M, Nonoguchi S, Wada H, Kimura T 2010 Appl. Phys. Lett. 97 222503

    [33]

    Vaz C A, Kläui F M, Heyderman L J, David C, Nolting F, Bland J A C 2005 Phys. Rev. B 72 224426

    [34]

    Jamali M, Narayanapillai K, Kwon J H, Yang H S 2012 Appl. Phys. Lett. 101 062401

    [35]

    Moutafis C, Komineas S, Vaz C A F, Bland J A C, Shima T, Seki T, Takanashi K 2007 Phys. Rev. B 76 104426

    [36]

    Yu X Z, DeGrave J P, Hara Y, Hara T, Jin S, Tokura Y 2013 Nano Lett. 13 3755

    [37]

    Du H F, Ning W, Tian M L, Zhang Y H 2013 Phys. Rev. B 87 014401

    [38]

    Kanda A, Suzuki A, Matsukura F, Ohno H 2010 Appl. Phys. Lett. 97 032504

    [39]

    Song Y L, Hua L 2012 J. Mater. Sci. Technol. 28 803

    [40]

    Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, Leclair P R, Santos T S, Moodera J S 2006 Nat. Mater. 5 298

    [41]

    Keller J, Miltényí P, Beschoten B, Gntherodt G, Nowak U, Usadel K D 2002 Phys. Rev. B 66 014431

    [42]

    Krusin-Elbaum L, Shibauchi T, Argyle B, Gignac L, Weller D 2001 Nature 410 444

    [43]

    Uchida M, Onose Y, Matsui Y, Tokura Y 2006 Science 311 359

    [44]

    Inada Y, Akase Z, Shindo D, Taniyama A 2012 Mater. Trans. 53 1330

    [45]

    Kunz A 2009 Appl. Phys. Lett. 94 132502

    [46]

    Compton R L, Chen T Y, Crowell P A 2010 Phys. Rev. B 81 144412

    [47]

    Garcia-Sanchez F, Szambolics H, Mihai A P, Vila L, Marty A, Attané J P, Toussaint J C, Buda-Prejbeanu L D 2010 Phys. Rev. B 81 134408

    [48]

    Shin S, Schäfer R, de Cooman B C 2010 IEEE Trans. Mag. 46 3574.

    [49]

    Löffler J F, Braun H B, Wagner W 2000 Phys. Rev. Lett. 85 1990

    [50]

    O'Grady K, Fernandez-Outon L E, Vallejo-Fernandez G 2010 J. Magn. Magn. Mater. 322 883

    [51]

    Anglada-Rivera J, Padovese L R, Capó-Sánchez J 2001 J. Magn. Magn. Mater. 231 299

    [52]

    Thevenard L, Largeau L, Manguin O, Patriarche G, Lemaître A, Vernier N, Ferré J 2006 Phys. Rev. B 73 195331

    [53]

    Seo J, Oh Y, Kim T H, Kuk Y 2011 Appl. Phys. Lett. 99 182501

    [54]

    Pierce M S, Davies J E, Turner J J, Chesnel K, Fullerton E E, Nam J, Hailstone R, Kevan S D, Kortright J B, Liu K, Sorensen L B, York B R, Willwig O 2013 Phys. Rev. B 87 184428

    [55]

    Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102

    [56]

    Liu W, Zhang Z D, Liu J P, Chen L J, He L L, Liu Y, Sun X K, Sellmyer D J 2002 Adv. Mater. 14 1832

    [57]

    Chen S L, Liu W, Chen C L, Zhang Z D 2005 J. Appl. Phys. 98 033907

    [58]

    Chen S L, Liu W, Zhang Z D 2005 Phys. Rev. B 72 224419

    [59]

    Chen S L, Zheng J G, Liu W, Zhang Z D 2007 J. Phys. D 40 1816

    [60]

    Chen S L, Liu W, Zhang Z D, Gunaratne G H 2008 J. Appl. Phys. 103 023922

    [61]

    Liu W, Liu X H, Cui W B, Gong W J, Zhang Z D 2013 Chin. Phys. B 22 027104

    [62]

    Cui W B, Zheng S J, Liu W, Ma X L, Fang Y, Yao Q, Zhao X G, Zhang Z D 2008 J. Appl. Phys. 104 053903

    [63]

    Yao Q, Liu W, Cui W B, Yang F, Zhao X G, Zhang Z D 2009 J. Phys. D.: Appl. Phys. 42 035007

    [64]

    Cui W B Takahashi Y K, Hono K 2012 Adv. Mater. 24 6530; Correction 2013 Adv. Mater. 25 1966

    [65]

    Dai Y Y, Wang H, Tao P, Yang T, Ren W J, Zhang Z D 2013 Phys. Rev. B 88 054403

    [66]

    Dai Y Y, Wang H, Yang T, Ren W J, Zhang Z D 2014 Scientific Report 4 6153

    [67]

    Wang H, Dai Y Y, Yang T, Ren W J, Zhang Z D 2014 RSC Adv. 4 62179

    [68]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201

    [69]

    Xia J, Zhang X C, Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese) [夏静, 张溪超, 赵国平 2013 物理学报 62 227502]

    [70]

    Kim J V, Carcia-Sanchez F, Sampaio J, Moreau-Luchaire C, Cros V, Fert A 2014 Phys. Rev. B 90 064410

    [71]

    Peng Y, Zhao G P, Wu S Q, Si W J, Wan X L 2014 Acta Phys. Sin. 63 167505 (in Chinese) [彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳 2014 物理学报 63 167505]

    [72]

    Moon K W, Chun B S, Kim W, Qiu Z Q, Huang C 2014 Phys. Rev. B 89 064413

    [73]

    Li Z H, Li X 2014 Acta Phys. Sin. 63 178503 (in Chinese) [李正华, 李翔 2014 物理学报 63 178503]

    [74]

    Wang R, Zheng F, Luo F L, Lou Y F, Wang Y, Cao J W, Bai J M, Wei F L, Kamzin A S 2013 Acta Phys. Sin. 62 217503 (in Chinese) [王锐, 郑富, 罗飞龙, 娄元付, 王颖, 曹江伟, 白建民, 魏福林, 阿谢卡姆津 2013 物理学报 62 217503]

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220446
    [2] 董丹娜, 蔡理, 李成, 刘保军, 李闯, 刘嘉豪. 界面Dzyaloshinskii-Moriya相互作用下辐射状磁涡旋形成机制. 物理学报, 2018, 67(22): 228502. doi: 10.7498/aps.67.20181392
    [3] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [4] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [5] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [6] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [7] 李颉, 张怀武, 李元勋, 李强, 秦军锋. 稀土元素La掺杂BaFe12O19 微结构和磁性能的研究 . 物理学报, 2012, 61(22): 227501. doi: 10.7498/aps.61.227501
    [8] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [9] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [10] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [11] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [12] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [13] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [14] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [15] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [16] 黄彦君, 厉淑贞, 韩志达, 吕丽娅, 夏元复. 金属间化合物PrMn6Sn6的结构、磁性与119Sn穆斯堡尔谱研究. 物理学报, 2007, 56(4): 2347-2352. doi: 10.7498/aps.56.2347
    [17] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [18] 郭焕银, 刘 宁, 蔡之让, 张裕恒. Mn位W掺杂对La0.3Ca0.7MnO3体系磁结构的影响. 物理学报, 2006, 55(2): 865-872. doi: 10.7498/aps.55.865
    [19] 王先杰, 隋 郁, 千正男, 刘志国, 苗继鹏, 黄喜强, 吕 喆, 朱瑞滨, 程金光, 苏文辉. Fe位Al掺杂对Sr2FeMoO6磁结构和磁输运性质的影响. 物理学报, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
    [20] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变. 物理学报, 2001, 50(2): 313-318. doi: 10.7498/aps.50.313
计量
  • 文章访问数:  8668
  • PDF下载量:  5619
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-26
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-03-05

磁性材料的磁结构、磁畴结构和拓扑磁结构

  • 1. 中国科学院金属研究所, 沈阳材料科学国家(联合)实验室, 沈阳 110016
    基金项目: 国家自然科学基金(批准号: 51331006)资助的课题.

摘要: 首先简要地介绍了磁性材料中磁结构、磁畴结构和拓扑磁结构以及相互之间的关系. 一方面, 磁畴结构由材料的磁结构、内禀磁性和微结构因素决定; 另一方面, 磁畴结构决定了材料磁化和退磁化过程以及技术磁性. 拓扑学与材料物理、材料性能的联系越来越紧密. 最近的研究兴趣集中在一些拓扑磁性组态, 如涡旋、磁泡、麦纫、斯格米子等. 研究发现这些拓扑磁结构的拓扑性质与磁性能密切相关. 然后从尺寸效应、缺陷、晶界三个方面介绍国际学术界在磁结构、磁畴结构和拓扑磁结构方面的进展. 最后介绍了在稀土永磁薄膜材料的微观结构、磁畴结构和磁性能关系、交换耦合纳米盘中的拓扑磁结构及其动力学行为方面的工作. 通过对文献的评述, 得到以下结论: 开展各向异性纳米复合稀土永磁材料的研究对更好地利用稀土资源具有重要的意义. 可以有目的地改变材料的微结构, 可控地进行磁性材料的磁畴工程, 最终获得优秀的磁性能. 拓扑学的概念正在应用于越来越多的学科领域, 在越来越多的材料中发现拓扑学的贡献. 研究磁畴结构、拓扑磁性基态或者激发态的形成规律以及动力学行为对理解量子拓扑相变以及其他与拓扑相关的物理效应是十分重要的. 也会帮助理解不同拓扑学态之间相互作用的物理机制及其与磁性能之间的关系, 同时拓展拓扑学在新型磁性材料中的应用.

English Abstract

参考文献 (74)

目录

    /

    返回文章
    返回