搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双相延迟模型的飞秒激光烧蚀金属模型

谭胜 吴建军 黄强 张宇 杜忻洳

引用本文:
Citation:

基于双相延迟模型的飞秒激光烧蚀金属模型

谭胜, 吴建军, 黄强, 张宇, 杜忻洳

A model of femtosecond laser ablation of metal based on dual-phase-lag model

Tan Sheng, Wu Jian-Jun, Huang Qiang, Zhang Yu, Du Xin-Ru
PDF
HTML
导出引用
  • 为了分析飞秒激光烧蚀过程, 在双相延迟模型的基础上建立了双曲型热传导模型. 模型中考虑了靶材的加热、蒸发和相爆炸, 还考虑了等离子体羽流的形成和膨胀及其与入射激光的相互作用, 以及光学和热物性参数随温度的变化. 研究结果表明: 等离子体屏蔽对飞秒激光烧蚀过程有重要的影响, 特别是在激光能量密度较高时; 两个延迟时间的比值对飞秒激光烧蚀过程中靶材的温度特性和烧蚀深度有较大的影响; 飞秒激光烧蚀机制主要以相爆炸为主. 飞秒激光烧蚀的热影响区域较小, 而且热影响区域的大小受激光能量密度的影响较小. 计算结果与文献中实验结果的对比表明基于双相延迟模型的飞秒激光烧蚀模型能有效对飞秒激光烧蚀过程进行模拟.
    Femtosecond laser ablation possesses a variety of applications due to its better control, high power density, smaller heat-affected zone, minimal collateral material damage, lower ablation thresholds, and excellent mechanical properties. The non-Fourier effect in heat conduction becomes significant when the heating time becomes extremely small. In order to analyze the femtosecond laser ablation process, a hyperbolic heat conduction model is established based on the dual-phase-lag model. Taken into account in the model are the effect of heat source, laser heating of the target, the evaporation and phase explosion of the target material, the formation and expansion of the plasma plume, and interaction of the plasma plume with the incoming laser. Temperature-dependent optical and thermophysical properties are also considered in the model due to the fact that the properties of the target will change over a wide range in the femtosecond laser ablation process. The effects of the plasma shielding, the ratio of the two delay times, and laser fluence are discussed and the effectiveness of the model is verified by comparing the simulation results with the experimental results. The results show that the plasma shielding has a great influence on the femtosecond laser ablation process, especially when the laser fluence is high. The ratio between the two delay times (the ratio B) has a great influence on the temperature characteristic and ablation characteristic in the femtosecond laser ablation process. The augment of the ratio B will increase the degree of thermal diffusion, which will lower down the surface temperature and accelerate the ablation rate after the ablation has begun. The ablation mechanism of femtosecond laser ablation is dominated by phase explosion. The heat affected zone of femtosecond laser ablation is small, and the heat affected zone is less affected by laser fluence. The comparison between the simulation results and the experimental results in the literature shows that the model based on the dual-phase-lag model can effectively simulate the femtosecond laser ablation process.
      通信作者: 谭胜, tsh201201401007@163.com
    • 基金项目: 国家自然科学基金(批准号: 11772354)资助的课题.
      Corresponding author: Tan Sheng, tsh201201401007@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11772354).
    [1]

    Shirk D, Molian P A 1998 J. Laser Appl. 10 18Google Scholar

    [2]

    Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638Google Scholar

    [3]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406

    [4]

    Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301Google Scholar

    [5]

    王文亭, 胡冰, 王明伟 2013 物理学报 62 060601Google Scholar

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601Google Scholar

    [6]

    Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487

    [7]

    Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148

    [8]

    Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77

    [9]

    谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415

    Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415

    [10]

    Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006Google Scholar

    [11]

    Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57Google Scholar

    [12]

    Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11

    [13]

    Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202Google Scholar

    [14]

    Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573Google Scholar

    [15]

    Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53

    [16]

    Perez D, Lewis L J 2003 Phys. Rev. B 67 184102Google Scholar

    [17]

    Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243Google Scholar

    [18]

    Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202Google Scholar

    [19]

    Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [20]

    Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407

    [21]

    王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 210601Google Scholar

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601Google Scholar

    [22]

    Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079Google Scholar

    [23]

    Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996Google Scholar

    [24]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789Google Scholar

    [25]

    Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563Google Scholar

    [26]

    Singh N 2010 Int. J. Mod. Phys. B 24 1141Google Scholar

    [27]

    Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835Google Scholar

    [28]

    Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1

    [29]

    Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167Google Scholar

    [30]

    Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307Google Scholar

    [31]

    Carpene E 2006 Phys. Rev. B 74 024301

    [32]

    Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108Google Scholar

    [33]

    Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104Google Scholar

    [34]

    Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705Google Scholar

    [35]

    Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742Google Scholar

    [36]

    Ji P, Zhang Y 2017 Appl. Phys. A 123 671Google Scholar

    [37]

    Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406Google Scholar

    [38]

    Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201Google Scholar

    [39]

    Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648Google Scholar

    [40]

    Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834Google Scholar

    [41]

    Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433Google Scholar

    [42]

    Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145

    [43]

    Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447Google Scholar

    [44]

    Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347Google Scholar

    [45]

    Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012Google Scholar

    [46]

    Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824Google Scholar

    [47]

    Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605

    [48]

    Catteneo C 1958 Compte Rendus 247 431

    [49]

    Vernotte P 1958 Compte Rendus 246 3154

    [50]

    Vick B, Ozisik M N 1983 J. Heat Transf. 105 902Google Scholar

    [51]

    Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331

    [52]

    Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013

    [53]

    Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772Google Scholar

    [54]

    Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12Google Scholar

    [55]

    Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)Google Scholar

    [56]

    Tzou D Y 1995 J. Heat Transf. 117 8Google Scholar

    [57]

    周凤玺, 李世荣 2006 兰州大学学报 42 55Google Scholar

    Zhou F, Li S 2006 J. Lanzhou Univ. 42 55Google Scholar

    [58]

    Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686Google Scholar

    [59]

    Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55Google Scholar

    [60]

    Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706Google Scholar

    [61]

    Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231Google Scholar

    [62]

    Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673Google Scholar

    [63]

    Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1Google Scholar

    [64]

    Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428Google Scholar

    [65]

    Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822Google Scholar

    [66]

    Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592

    [67]

    Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725Google Scholar

    [68]

    Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45Google Scholar

    [69]

    Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301Google Scholar

    [70]

    Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008Google Scholar

    [71]

    Kumar D, Rai K N 2017 J. Therm. Biol. 67 49Google Scholar

    [72]

    Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307Google Scholar

    [73]

    Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101Google Scholar

    [74]

    谭新玉, 张端明, 李智华, 关丽, 李莉 2005 物理学报 54 3915Google Scholar

    Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915Google Scholar

    [75]

    Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716Google Scholar

    [76]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [77]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [78]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843Google Scholar

    [79]

    Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1

    [80]

    Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075Google Scholar

    [81]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [82]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [83]

    Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169

    [84]

    Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307Google Scholar

    [85]

    Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301Google Scholar

    [86]

    陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页

    Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)

    [87]

    张代贤 2014 博士学位论文 (长沙: 国防科技大学)

    Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [88]

    蒋方明, 刘登瀛 2001 上海理工大学学报 23 197Google Scholar

    Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197Google Scholar

    [89]

    Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238Google Scholar

    [90]

    Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060Google Scholar

    [91]

    Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178

  • 图 1  蒸发开始前激光与靶材相互作用示意图

    Fig. 1.  Schematic of laser interaction with target before the initiation of the evaporation.

    图 2  蒸发开始后激光与靶材相互作用示意图

    Fig. 2.  Schematic of laser interaction with target after the initiation of the evaporation.

    图 3  激光强度与最大激光强度的比值随时间的变化(tp = 170 fs (FWHM))

    Fig. 3.  The variation of the ratio of laser intensity to maximum laser intensity with time (tp = 170 fs (FWHM)).

    图 4  计算网格示意图

    Fig. 4.  Schematic of computational grids.

    图 5  激光强度和烧蚀深度的对比(Ffluence = 20.0 J/cm2)

    Fig. 5.  Comparison of laser intensity and ablation depth (Ffluence = 20.0 J/cm2).

    图 6  等离子体屏蔽比例随着激光能量密度的变化

    Fig. 6.  Variation of plasma shielding proportions with laser fluence.

    图 7  不同比值B (${\tau _q}$不变)时, 温度沿靶材深度的分布(Ffluence = 0.2 J/cm2)

    Fig. 7.  Distribution of temperature along the target depth at different ratios B (${\tau _q}$ is constant) (Ffluence = 0.2 J/cm2).

    图 8  比值B (${\tau _q}$不变)对表层温度的影响(Ffluence = 10.0 J/cm2)

    Fig. 8.  The effect of ratios B (${\tau _q}$ is constant) on temperature of surface layer (Ffluence = 10.0 J/cm2).

    图 9  比值B (${\tau _q}$不变)对表面温度的影响(Ffluence = 10.0 J/cm2)

    Fig. 9.  The effect of ratios B (${\tau _q}$ is constant) on surface temperature (Ffluence = 10.0 J/cm2).

    图 10  比值B (${\tau _q}$不变)对烧蚀深度的影响(Ffluence = 10.0 J/cm2)

    Fig. 10.  The effect of ratios B (${\tau _q}$ is constant) on ablation depth (Ffluence = 10.0 J/cm2).

    图 11  比值B ($\tau _{\rm{T}}$不变)对表面温度的影响(Ffluence = 10.0 J/cm2)

    Fig. 11.  The effect of ratios B ($\tau _{\rm{T}}$ is constant) on surface temperature (Ffluence = 10.0 J/cm2).

    图 12  比值B($\tau _{\rm{T}}$不变)对烧蚀特性的影响(Ffluence = 10.0 J/cm2)

    Fig. 12.  The effect of ratios B ($\tau _{\rm{T}}$ is constant) on ablation depth (Ffluence = 10.0 J/cm2).

    图 13  不同激光能量密度下, 表面温度随时间的变化($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps)

    Fig. 13.  Surface temperature changes with time at different laser fluence ($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps).

    图 14  不同激光能量密度下, 烧蚀深度随时间的变化($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps)

    Fig. 14.  Ablation depth changes with time at different laser fluence ($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps).

    图 15  不同能量密度下, 烧蚀深度、超热液体层、融化层和热影响的固体层随时间的变化($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps)

    Fig. 15.  The ablation depth, the superheated liquid layer, melting layer and heat affected solid layer as a function of time at different laser fluence ($\tau _{\rm{T}}$ = 12.0 ps, ${\tau _q}$ = 1.0 ps).

    图 16  烧蚀深度的计算结果与文献[90]的实验结果对比(tp = 170 fs (FWHM))

    Fig. 16.  Comparison of simulation results of ablation depth with the experimental results from Ref. [90] (tp = 170 fs (FWHM)).

    图 17  烧蚀深度的计算结果与文献[91]的实验结果对比(tp = 70 fs (FWHM))

    Fig. 17.  Comparison of simulation results of ablation depth with the experimental results from Ref. [91] (tp = 70 fs (FWHM)).

    表 1  模型中用到的Cu的参数

    Table 1.  Parameters of Cu used in the model.

    参数符号取值文献
    熔点/K${T_{\rm{m}}}$1357.77[83]
    沸点/K${T_{\rm{b}}}$2835.15[83]
    蒸发潜热/J·kg–1${L_{{\rm{hv}}}}$4.79937 × 106[83]
    第一电离能/eV$I{P_1}$7.72638[83]
    临界温度/K${T_{{\rm{cr}}}}$8500.00[81]
    蒸发系数${C_{\rm{s}}}$0.82[85]
    热流矢量延迟时间/ps${\tau _q}$0.56—5.4[66]
    温度梯度延迟时间/ps${\tau _{\rm{T}}}$6.0—63.0[66]
    下载: 导出CSV
  • [1]

    Shirk D, Molian P A 1998 J. Laser Appl. 10 18Google Scholar

    [2]

    Mao Y D, Xu M T 2015 Sci. China: Technol. Sci. 58 638Google Scholar

    [3]

    Amoruso S, Ausanio G, Bruzzese R, Vitiello M, Wang X 2005 Phys. Rev. B 71 033406

    [4]

    Tsakiris N, Anoop K K, Ausanio G, Gill-Comeau M, Bruzzese R, Amoruso S, Lewis L J 2014 J. Appl. Phys. 115 243301Google Scholar

    [5]

    王文亭, 胡冰, 王明伟 2013 物理学报 62 060601Google Scholar

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601Google Scholar

    [6]

    Liebig C M, Srisungsitthisunti P, Weiner A M, Xu X 2010 Appl. Phys. A 101 487

    [7]

    Herman P R, Oettl A, Chen K P, Marjoribanks R S 1999 Proceedings of SPIE - The International Society for Optical Engineering California, USA, January 4, 1999 p148

    [8]

    Derrien T J, Krüger J, Itina T E, Höhm S, Rosenfeld A, Bonse J 2014 Opt. Express 117 77

    [9]

    谭胜, 吴建军, 张宇, 程玉强, 李健, 欧阳 2018 推进技术 39 2415

    Tan S, Wu J J, Zhang Y, Cheng Y Q, Li J, Ou Y 2018 J. Propuls. Technol. 39 2415

    [10]

    Piñon V, Fotakis C, Nicolas G, Anglos D 2008 Spectrochim. Acta Part B 63 1006Google Scholar

    [11]

    Miyamoto I, Horn A, Gottmann J, Wortmann D, Yoshino F 2007 J. Laser Micro/Nanoeng. 2 57Google Scholar

    [12]

    Zhang Y, Tzou D Y, Chen J K 2009 High-Power and Femtosecond Lasers: Properties, Materials and Applications (1st Ed.) (New York: Nova Science Publisher) pp1–11

    [13]

    Eidmann K, Meyer-ter-Vehn J, Schlegel T, Hüller S 2000 Phys. Rev. E 62 1202Google Scholar

    [14]

    Vidal F, Johnstion T W, Laville S, Barthélemy, Chaker M, Drogoff B L, Margot J, Sabsabi M 2001 Phys. Rev. Lett. 86 2573Google Scholar

    [15]

    Ding P J, Hu B T, Li Y H 2011 NDT E Int. 29 53

    [16]

    Perez D, Lewis L J 2003 Phys. Rev. B 67 184102Google Scholar

    [17]

    Nedialkov N N, Imamova S E, Atanasov P A, Berger P, Dausinger F 2005 Appl. Surf. Sci. 247 243Google Scholar

    [18]

    Liu X, Zhou W, Chen C, Zhao L, Zhang Y 2008 J. Mat. Proc. Technol. 203 202Google Scholar

    [19]

    Chichkov B N, Momma C, Nolte S, von Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [20]

    Hu W, Shin Y C, King G 2010 Appl. Phys. A 98 407

    [21]

    王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农 2013 物理学报 62 210601Google Scholar

    Wang W T, Zhang N, Wang M W, He Y H, Yang J J, Zhu X N 2013 Acta Phys. Sin. 62 210601Google Scholar

    [22]

    Wu B, Shin Y C 2007 Appl. Surf. Sci. 253 4079Google Scholar

    [23]

    Wu B, Shin Y C 2009 Appl. Surf. Sci. 255 4996Google Scholar

    [24]

    Qiu T Q, Tien C L 1994 Int. J. Heat Mass Transf. 37 2789Google Scholar

    [25]

    Tzou D Y, Chen J K, Beraun J E 2005 J. Therm. Stress. 28 563Google Scholar

    [26]

    Singh N 2010 Int. J. Mod. Phys. B 24 1141Google Scholar

    [27]

    Qiu T Q, Tien C L 1993 J. Heat Tranf. 115 835Google Scholar

    [28]

    Chen J K, Beraun J E 2001 Numer. Heat Transf. Part A: Appl. 40 1

    [29]

    Jiang L, Tsai H L 2005 J. Heat Transf. 127 1167Google Scholar

    [30]

    Chen J K, Tzou D Y, Beraun J E 2006 Int. J. Heat Mass Transf. 49 307Google Scholar

    [31]

    Carpene E 2006 Phys. Rev. B 74 024301

    [32]

    Fang R, Wei H, Li Z, Zhang D 2012 Solid State Commun. 152 108Google Scholar

    [33]

    Zhang J, Chen Y, Hu M, Chen X 2015 J. Appl. Phys. 117 063104Google Scholar

    [34]

    Shin T, Teitelbaum S W, Wolfson J, Kandyla M, Nelson K A 2015 J. Chem. Phys. 143 194705Google Scholar

    [35]

    Sonntag S, Roth J, Gaehler F, Trebin H R 2009 Appl. Surf. Sci. 255 9742Google Scholar

    [36]

    Ji P, Zhang Y 2017 Appl. Phys. A 123 671Google Scholar

    [37]

    Colombier J P, Combis P, Bonneau F, Le Harzic R, Audouard E 2005 Phys. Rev. B 71 165406Google Scholar

    [38]

    Zhao X, Shin Y C 2012 J. Phys. D: Appl. Phys. 45 105201Google Scholar

    [39]

    Taylor L L, Scott R E, Qiao J 2018 Opt. Mater. Express 8 648Google Scholar

    [40]

    Fann W S, Storz R, Tom H W K, Bokor J 1992 Phys. Rev. Lett. 68 2834Google Scholar

    [41]

    Groeneveld R H M, Sprik R, Lagendijk A 1995 Phys. Rev. B 51 11433Google Scholar

    [42]

    Schmidt V, Husinsky W, Betz G 2002 Appl. Surf. Sci. 197 145

    [43]

    Byskov-Nielsen J, Savolainen J M, Christensen M S, Balling P 2011 Appl. Phys. A 103 447Google Scholar

    [44]

    Christensen B H, Vestentoft K, Balling P 2007 Appl. Surf. Sci. 253 6347Google Scholar

    [45]

    Abdelmalek A, Bedrane Z, Amara E 2018 J. Phys. Conf. Ser. 987 012012Google Scholar

    [46]

    Qi H T, Xu H Y, Guo X W 2013 Comput. Math. Appl. 66 824Google Scholar

    [47]

    Rahideh H, Malekzadeh P, Haghighi M R G 2011 ISRN Mech. Eng. 321605

    [48]

    Catteneo C 1958 Compte Rendus 247 431

    [49]

    Vernotte P 1958 Compte Rendus 246 3154

    [50]

    Vick B, Ozisik M N 1983 J. Heat Transf. 105 902Google Scholar

    [51]

    Jiang F, Liu D, Zhou J 2002 Microsc. Thermophys. Eng. 6 331

    [52]

    Bag S, Sahu P K 2013 Proceeding of the 22th National and 11th International ISHMT-ASME Heat and Mass Transfer Conference IIT Kharagpur, India, December 28–31, 2013

    [53]

    Zhang L, Shang X 2015 Int. J. Heat Mass Transf. 85 772Google Scholar

    [54]

    Singh S, Kumar S 2014 Int. J. Therm. Sci. 86 12Google Scholar

    [55]

    Li J, Wang B 2018 Mech. Adv. Mat. Struct. (online)Google Scholar

    [56]

    Tzou D Y 1995 J. Heat Transf. 117 8Google Scholar

    [57]

    周凤玺, 李世荣 2006 兰州大学学报 42 55Google Scholar

    Zhou F, Li S 2006 J. Lanzhou Univ. 42 55Google Scholar

    [58]

    Tzou D Y 1995 J. Thermophys. Heat Transf. 9 686Google Scholar

    [59]

    Ho J R, Kuo C P, Jiaung W S 2003 Int. J. Heat Mass Transf. 46 55Google Scholar

    [60]

    Ghazanfarian J, Abbassi A 2009 Int. J. Heat Mass Transf. 52 3706Google Scholar

    [61]

    Ghazanfarian J, Shomali Z 2012 Int. J. Heat Mass Transf. 55 6231Google Scholar

    [62]

    Askarizadeh H, Ahmadikia H 2014 Heat Mass Transf. 50 1673Google Scholar

    [63]

    Liu K C, Chen Y S 2016 Int. J. Therm. Sci. 103 1Google Scholar

    [64]

    Zhang Y, Chen B, Li D 2017 Int. J. Heat Mass Transf. 108 1428Google Scholar

    [65]

    Vadasz P 2005 Int. J. Heat Mass Transf. 48 2822Google Scholar

    [66]

    Tzou D Y 2015 Macro- to Microscale Heat Transfer: the Lagging Behavior (2nd Ed.) (West Sussex: Wiley) pp201–592

    [67]

    Tzou D Y, Chiu K S 2001 Int. J. Heat Mass Transf. 44 1725Google Scholar

    [68]

    Lee Y M, Tsai T W 2007 Int. Commun. Heat Mass Transf. 34 45Google Scholar

    [69]

    Ramadan K, Tyfour W R, Al-Nimr M A 2009 J. Heat Transf. 131 111301Google Scholar

    [70]

    Kumar S, Bag S, Baruah M 2016 J. Laser Appl. 28 032008Google Scholar

    [71]

    Kumar D, Rai K N 2017 J. Therm. Biol. 67 49Google Scholar

    [72]

    Ji C, Dai W, Sun Z 2018 J. Sci. Comput. 75 1307Google Scholar

    [73]

    Marla D, Bhandarkar U V, Joshi S S 2011 J. Appl. Phys. 109 021101Google Scholar

    [74]

    谭新玉, 张端明, 李智华, 关丽, 李莉 2005 物理学报 54 3915Google Scholar

    Tan X Y, Zhang D M, Li Z H, Guan L, Li L 2005 Acta Phys. Sin. 54 3915Google Scholar

    [75]

    Peterlongo A, Miotello A, Kelly R 1994 Phys. Rev. E 50 4716Google Scholar

    [76]

    Gragossian A, Tavassoli S H, Shokri B 2009 J. Appl. Phys. 105 103304Google Scholar

    [77]

    Marla D, Bhandarkar U V, Joshi S S 2014 Appl. Phys. A 116 273Google Scholar

    [78]

    Singh R K, Narayan J 1990 Phys. Rev. B 41 8843Google Scholar

    [79]

    Chen F F 1985 Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics) (2nd Ed.) (New York: Plenum Press) p1

    [80]

    Garrelie F, Aubreton J, Catherinot A 1998 J. Appl. Phys. 83 5075Google Scholar

    [81]

    Ho C Y, Powell R W, Liley P E 1972 J. Phys. Chem. Ref. Data 1 279Google Scholar

    [82]

    Brandt R, Neuer G 2007 Int. J. Thermophys. 28 1429Google Scholar

    [83]

    Lide D R, Haynes W M 2010 CRC Handbook of Chemistry and Physics (90th Ed.) (Florida: CRC Press) pp764–2169

    [84]

    Clair G, L’Hermite D 2011 J. Appl. Phys. 110 083307Google Scholar

    [85]

    Singh K S, Sharma A K 2016 J. Appl. Phys. 119 183301Google Scholar

    [86]

    陶文铨 2001 数值传热学 (第二版) (西安: 西安交通大学出版社) 第63页

    Tao W Q 2001 Numerical Heat Transfer (2st Ed.) (Xi’an: Xi’an Jiaotong University Press) p63 (in Chinese)

    [87]

    张代贤 2014 博士学位论文 (长沙: 国防科技大学)

    Zhang D X 2014 Ph.D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [88]

    蒋方明, 刘登瀛 2001 上海理工大学学报 23 197Google Scholar

    Jiang F M, Liu D Y 2001 J. Univ. Shanghai Sci. Tech. 23 197Google Scholar

    [89]

    Valette S, Harzic R Le, Huot N, Audouard E, Fortunier R 2005 Appl. Surf. Sci. 247 238Google Scholar

    [90]

    Davydov R V, Antonov V I 2016 J. Phys. Conf. Ser. 769 012060Google Scholar

    [91]

    Hashida M, Semerok A, Gobert O, Petite G, Wagner J F 2001 Proceedings of SPIE St. Petersburg, Russian Federation, June 26, 2001 p178

  • [1] 林成亮, 何斌, 吴勇, 王建国. 动态响应和屏蔽效应对稠密等离子体中电子离子能量弛豫的影响. 物理学报, 2025, 74(3): 035101. doi: 10.7498/aps.74.20241588
    [2] 尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁. 高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究. 物理学报, 2024, 73(9): 095202. doi: 10.7498/aps.73.20231625
    [3] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [4] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [5] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [7] 马晓波, 王飞, 陈德珍. 亚表面异质缺陷对功能梯度材料表面温度场的影响. 物理学报, 2014, 63(19): 194401. doi: 10.7498/aps.63.194401
    [8] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [9] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [10] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [11] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究. 物理学报, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [12] 郭凯敏, 高勋, 薛念亮, 赵振明, 李海军, 鲁毅, 林景全. 飞秒激光等离子体单丝导电性能的空间分辨研究. 物理学报, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [13] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [14] 胡浩丰, 王晓雷, 郭文刚, 翟宏琛, 王攀. 强飞秒激光烧蚀石英玻璃的超快时间分辨光学诊断. 物理学报, 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [15] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 物理学报, 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [16] 胡浩丰, 王晓雷, 李智磊, 张楠, 翟宏琛. 飞秒激光烧蚀铝靶产生喷射物的超快脉冲数字全息诊断. 物理学报, 2009, 58(11): 7662-7667. doi: 10.7498/aps.58.7662
    [17] 李永强, 吴建华, 袁建民. 等离子体屏蔽效应对原子能级和振子强度的影响. 物理学报, 2008, 57(7): 4042-4048. doi: 10.7498/aps.57.4042
    [18] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [19] 林兆祥, 吴金泉, 龚顺生. 延迟双脉冲激光产生的空气等离子体的光谱研究. 物理学报, 2006, 55(11): 5892-5898. doi: 10.7498/aps.55.5892
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  9667
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2019-01-10
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回