搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面原子操纵与物性调控研究进展

韩相和 黄子豪 范朋 朱诗雨 申承民 陈辉 高鸿钧

引用本文:
Citation:

表面原子操纵与物性调控研究进展

韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧

Research progress of surface atomic manipulation and physical property regulation of low-dimensional structures

Han Xiang-He, Huang Zi-Hao, Fan Peng, Zhu Shi-Yu, Shen Cheng-Min, Chen Hui, Gao Hong-Jun
PDF
HTML
导出引用
  • 利用扫描隧道显微镜可以在单原子层次上对材料进行操纵, 改变其结构与特性, 实现原子级结构与物性的精准调控. 近年来, 扫描隧道显微镜原子操纵技术被广泛用于新型低维材料的精准构筑与物性调控. 本文主要介绍应用原子操纵技术对低维材料物性调控的最新研究进展, 总结了4种主要探针操纵模式: 1)探针局域电场模式; 2)调节探针-样品垂直间距模式; 3)无损形态调控模式; 4)可控裁剪刻蚀模式. 通过这些探针操纵模式引入局域的电场、磁场、应力场等, 实现在单原子层次上对低维材料的电荷密度波、近藤效应、非弹性隧穿效应、马约拉纳束缚态等新奇物性进行精准地调控.
    Atomic manipulation technique with scanning tunneling microscopy (STM) has been used to control the structural and physical properties of materials at an atomic level. Recently, this technique has been extended to modifying the physical properties of low-dimensional materials. Unlike conventional single atom lateral manipulation, the STM manipulation technique in the study of low-dimensional materials has additional manipulation modes and focuses on the modification of physical properties. In this review paper, we introduce the recent experimental progress of tuning the physical properties of low-dimensional materials through STM atomic manipulation technique. There are mainly four manipulation modes: 1) tip-induced local electric field; 2) controlled tip approach or retract; 3) tip-induced non-destructive geometry manipulation; 4) tip-induced kirigami and lithography. Through using these manipulation modes, the STM tip effectively introduces the attractive force or repulsive force, local electronic field or magnetic field and local strain, which results in the atomically precise modification of physical properties including charge density wave, Kondo effect, inelastic tunneling effect, Majorana bound states, and edge states.
      通信作者: 陈辉, hchenn04@iphy.ac.cn ; 高鸿钧, hjgao@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61888102, 52022105)和中国科学院B类先导专项(批准号: XDB30000000)资助的课题.
      Corresponding author: Chen Hui, hchenn04@iphy.ac.cn ; Gao Hong-Jun, hjgao@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61888102, 52022105) and the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDB30000000).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [3]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [4]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [5]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013

    [6]

    Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R, Zhigadlo N D, Qi Y, Qian D, Chou F C, Xu X 2018 Chem. Mater. 30 4823Google Scholar

    [7]

    Vafek O, Vishwanath A 2014 Annu. Rev. Condens. Matter phys. 5 83Google Scholar

    [8]

    den Heijer M, Fokkema V, Saedi A, Schakel P, Rost M J 2014 Rev. Sci. Instrum. 85 055007Google Scholar

    [9]

    Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar

    [10]

    李宇昂, 吴迪, 王栋立, 胡昊, 潘毅 2021 物理学报 70 020701Google Scholar

    Li Y A, Wu D, Wang L D, Hu H, Pan Y 2021 Acta Phys. Sin. 70 020701Google Scholar

    [11]

    Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga A L, Miranda R, Agrait N 2012 Ultramicroscopy 122 1Google Scholar

    [12]

    Baek H, Ha J, Zhang D M, Natarajan B, Winterstein J P, Sharma R, Hu R W, Wang K F, Ziemak S, Paglione J, Kuk Y, Zhitenev N B, Stroscio J A 2015 Phys. Rev. B 92 094510Google Scholar

    [13]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542Google Scholar

    [14]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar

    [15]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Song S R, Du S X, Min O Y, Hofer W A, Neto A H C, Gao H J 2015 Phys. Rev. Lett. 114 126601Google Scholar

    [16]

    Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Goo H J 2014 ACS Nano 8 2246Google Scholar

    [17]

    Repicky J, Wu P K, Liu T, Corbett J P, Zhu T C, Cheng S Y, Ahmed A S, Takeuchi N, Guerrero-Sanchez J, Randeria M, Kawakami R K, Gupta J A 2021 Science 374 abd9225Google Scholar

    [18]

    Chang K, Kuster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar

    [19]

    Zhao Y X, Zhou X F, Zhang Y, He L 2021 Phys. Rev. Lett. 127 266801Google Scholar

    [20]

    Liu Y W, Su Y, Zhou X F, Yin L J, Yan C, Li S Y, Yan W, Han S, Fu Z Q, Zhang Y, Yang Q, Ren Y N, He L 2020 Phys. Rev. Lett. 125 236102Google Scholar

    [21]

    Gerhard L, Yamada T K, Balashov T, Takacs A F, Wesselink R J H, Dane M, Fechner M, Ostanin S, Ernst A, Mertig I, Wulfhekel W 2010 Nat. Nanotechnol. 5 792Google Scholar

    [22]

    Zhang Q Z, Wen H F, Adachi Y, Miyazaki M, Sugawara Y, Xu R, Cheng Z H, Li Y J 2019 J. Phys. Chem. C 123 22595Google Scholar

    [23]

    Wong D, Velasco Jr J, Ju L, Lee J, Kahn S, Tsai H Z, Germany C, Taniguchi T, Watanabe K, Zettl A, Wang F, Crommie M F 2015 Nat. Nanotechnol. 10 949Google Scholar

    [24]

    Sullivan S P, Schmeders A, Mbugua S K, Beebe T P 2005 Langmuir 21 1322Google Scholar

    [25]

    Mao J H, Jiang Y H, Moldovan D, Li G H, Watanabe K, Taniguchi T, Masir M R, Peeters F M, Andrei E Y 2016 Nat. Phys. 12 545Google Scholar

    [26]

    Chan Y, Khan S B, Mahmood A, Saleemi A S, Lian Z, Ren Y, Zeng X M, Lee S L 2020 J. Phys. Chem. C 124 815Google Scholar

    [27]

    Wang H, Lee J, Dreyer M, Barker B I 2009 J. Phys.: Condens. Mat. 21 265005Google Scholar

    [28]

    Chen W, Madhavan V, Jamneala T, Crommie M F 1998 Phys. Rev. Lett. 80 1469Google Scholar

    [29]

    Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, Gao H J 2021 Nature 599 222Google Scholar

    [30]

    Chen H, Xiao W, Wu X, Yang K, Gao H J 2014 J. Vac. Sci. Technol. B 32 061801Google Scholar

    [31]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X M, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [32]

    Kuester F, Montero A M, Guimaraes F S M, Brinker S, Lounis S, Parkin S S P, Sessi P 2021 Nat. Commun. 12 1108Google Scholar

    [33]

    Jack B, Eltschka M, Assig M, Etzkorn M, Ast C R, Kern K 2016 Phys. Rev. B 93 020504Google Scholar

    [34]

    Jack B, Eltschka M, Assig M, Hardock A, Etzkorn M, Ast C R, Kern K 2015 Appl. Phys. Lett. 106 013109Google Scholar

    [35]

    Mashoff T, Pratzer M, Geringer V, Echtermeyer T J, Lemme M C, Liebmann M, Morgenstern M 2010 Nano Lett. 10 461Google Scholar

    [36]

    Xu P, Yang Y R, Barber S D, Ackerman M L, Schoelz J K, Qi D, Kornev I A, Dong L F, Bellaiche L, Barraza-Lopez S, Thibado P M 2012 Phys. Rev. B 85 121406Google Scholar

    [37]

    Klimov N N, Jung S, Zhu S Z, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B, Stroscio J A 2012 Science 336 1557Google Scholar

    [38]

    Zhu S Z, Huang Y, Klimov N N, Newell D B, Zhitenev N B, Stroscio J A, Solares S D, Li T 2014 Phys. Rev. B 90 075426Google Scholar

    [39]

    Breitwieser R, Hu Y C, Chao Y C, Li R J, Tzeng Y R, Li L J, Liou S C, Lin K C, Chen C W, Pai W W 2014 Carbon 77 236Google Scholar

    [40]

    Neek-Amal M, Xu P, Schoelz J K, Ackerman M L, Barber S D, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 4962Google Scholar

    [41]

    Yankowitz M, Watanabe K, Taniguchi T, San-Jose P, LeRoy B J 2016 Nat. Commun. 7 13168Google Scholar

    [42]

    Georgi A, Nemes-Incze P, Carrillo-Bastos R, Faria D, Kusminskiy S V, Zhai D W, Schneider M, Subramaniam D, Mashoff T, Freitag N M, Liebmann M, Pratzer M, Wirtz L, Woods C R, Gorbachey R V, Cao Y, Novoselov K S, Sandier N, Morgenstern M 2017 Nano Lett. 17 2240Google Scholar

    [43]

    Breitwieser R, Hu Y C, Chao Y C, Tzeng Y R, Liou S C, Lin K C, Chen C W, Pai W W 2017 Phys. Rev. B 96 085433Google Scholar

    [44]

    van der Lit J, Jacobse P H, Vanmaekelbergh D, Swart I 2015 New J. Phys. 17 053013Google Scholar

    [45]

    Leicht P, Zielke L, Bouvron S, Moroni R, Voloshina E, Hammerschmidt L, Dedkov Y S, Fonin M 2014 ACS Nano 8 3735Google Scholar

    [46]

    Chen H, Bao D L, Wang D F, Que Y D, Xiao W D, Zhang Y Y, Sun J T, Du S X, Gao H J 2020 Nano Res. 13 3286Google Scholar

    [47]

    Chen H, Zhang X L, Zhang Y Y, Wang D F, Bao D L, Que Y D, Xiao W D, Du S X, Ouyang M, Pantelides S T, Gao H J 2019 Science 365 1036Google Scholar

    [48]

    Thomas L K, Reichling M 2019 Beilstein J. Nanotechnol. 10 804Google Scholar

    [49]

    Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J, Qin Z H 2020 Carbon 165 169Google Scholar

    [50]

    Yin L J, Wang W X, Feng K K, Nie J C, Xiong C M, Dou R F, Naugle D G 2015 Nanoscale 7 14865Google Scholar

    [51]

    Yu M, Xu W, Benjalal Y, Barattin R, Lægsgaard E, Stensgaard I, Hliwa M, Bouju X, Gourdon A, Joachim C J N R 2009 Nano Res. 2 254Google Scholar

    [52]

    Koch M, Ample F, Joachim C, Grill L 2012 Nat. Nanotechnol. 7 713Google Scholar

    [53]

    Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L 2009 Science 323 1193Google Scholar

    [54]

    Magda G Z, Jin X Z, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C Y, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar

    [55]

    Tapaszto L, Dobrik G, Lambin P, Biro L P 2008 Nat. Nanotechnol. 3 397Google Scholar

    [56]

    Liu G Y, Xu S, Qian Y 2000 Acc. Chem. Res. 33 457Google Scholar

    [57]

    Pavlova T V, Shevlyuga V M, Andryushechkin B V, Zhidomirov G M, Eltsov K N 2020 Appl. Surf. Sci. 509 145235Google Scholar

    [58]

    Nemes-Incze P, Tapasztó L, Magda G Z, Osváth Z, Dobrik G, Jin X, Hwang C, Biró L P 2014 Appl. Surf. Sci. 291 48Google Scholar

    [59]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [60]

    Ruess F J, Pok W, Goh K E J, Hamilton A R, Simmons M Y 2007 Phys. Rev. B 75 121303Google Scholar

    [61]

    Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64Google Scholar

    [62]

    Fuechsle M, Mahapatra S, Zwanenburg F A, Friesen M, Eriksson M A, Simmons M Y 2010 Nat. Nanotechnol. 5 502Google Scholar

    [63]

    Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G, Simmons M Y 2012 Nat. Nanotechnol. 7 242Google Scholar

    [64]

    Schofield S R, Curson N J, Simmons M Y, Ruess F J, Hallam T, Oberbeck L, Clark R G 2003 Phys. Rev. Lett. 91 136104Google Scholar

    [65]

    Weber B, Tan Y H M, Mahapatra S, Watson T F, Ryu H, Rahman R, Hollenberg L C L, Klimeck G, Simmons M Y 2014 Nat. Nanotechnol. 9 430Google Scholar

    [66]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [67]

    Butler S Z, Hollen S M, Cao L Y, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [68]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [69]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [70]

    Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tomanek D, Son Y W, Chen X H, Zhang Y B 2016 Nat. Commun. 7 10956Google Scholar

    [71]

    Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W, Yeom H W 2016 Nat. Commun. 7 10453Google Scholar

    [72]

    Song X, Liu L, Chen Y, Yang H, Huang Z, Hou B, Hou Y, Han X, Yang H, Zhang Q, Zhang T, Zhou J, Huang Y, Zhang Y, Gao H J, Wang Y 2022 Nat. Commun. 13 1843Google Scholar

    [73]

    Chen Z, Fu W, Wang L, Yu W, Li H H, Tan C K Y, Abdelwahab I, Shao Y, Su C L, Sun M Z, Huang B L, Loh K P 2021 Adv. Sci. 8 2100713Google Scholar

    [74]

    Zhang Z M, Nie J H, Zhang Z H, Yuan Y, Fu Y S, Zhang W H 2022 Adv. Mater. 34 2106951Google Scholar

    [75]

    Wang Y F, Kroger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639Google Scholar

    [76]

    Pivetta M, Ternes M, Patthey F, Schneider W D 2007 Phys. Rev. Lett. 99 126104Google Scholar

    [77]

    Strozecka A, Soriano M, Pascual J I, Palacios J J 2012 Phys. Rev. Lett. 109 147202Google Scholar

    [78]

    Gopakumar T G, Tang H, Morillo J, Berndt R 2012 J. Am. Chem. Soc. 134 11844Google Scholar

    [79]

    Chen H, Pope T, Wu Z Y, Wang D F, Tao L, Bao D L, Xiao W D, Zhang J L, Zhang Y Y, Du S X, Gao S, Pantelides S T, Hofer W A, Gao H J 2017 Nano Lett. 17 4929Google Scholar

    [80]

    Xu P, Neek-Amal M, Barber S D, Schoelz J K, Ackerman M L, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 3720Google Scholar

    [81]

    Li S Y, Bai K K, Zuo W J, Liu Y W, Fu Z Q, Wang W X, Zhang Y, Yin L J, Qiao J B, He L 2018 Phys. Rev. Appl. 9 054031Google Scholar

    [82]

    Yoo H, Engelke R, Carr S, Fang S A, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [83]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [84]

    Li Z, Zhuang J C, Wang L, Feng H F, Gao Q, Xu X, Hao W C, Wang X L, Zhang C, Wu K H, Dou S X, Chen L, Hu Z P, Du Y 2018 Sci. Adv. 4 eaau4511Google Scholar

    [85]

    Li Z, Zhuang J C, Chen L, Ni Z Y, Liu C, Wang L, Xu X, Wang J O, Pi X D, Wang X L, Du Y, Wu K H, Dou S X 2016 ACS Cent. Sci. 2 517Google Scholar

    [86]

    Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, Meng S 2013 Phys. Rev. Lett. 110 085504Google Scholar

    [87]

    Chen J, Du Y, Li Z, Li W B, Feng B J, Qiu J L, Cheng P, Dou S X, Chen L, Wu K H 2015 Sci. Rep. 5 13590Google Scholar

    [88]

    Xing Y, Shen J, Chen H, Huang L, Gao Y, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G, Cao L, Zhang X, Fan P, Ma R, Wang Q, Yin Q, Lei H, Ji W, Du S, Yang H, Wang W, Shen C, Lin X, Liu E, Shen B, Wang Z, Gao H J 2020 Nat. Commun. 11 5613Google Scholar

    [89]

    Setvin M, Schmid M, Diebold U 2015 Phys. Rev. B 91 195403Google Scholar

    [90]

    Nguyen G D, Liang L B, Zou Q, Fu M M, Oyedele A D, Sumpter B G, Liu Z, Gai Z, Xiao K, Li A P 2018 Phys. Rev. Lett. 121 086101Google Scholar

    [91]

    Selcuk S, Selloni A 2014 J. Chem. Phys. 141 084705Google Scholar

    [92]

    Setvin M, Aschauer U, Scheiber P, Li Y F, Hou W Y, Schmid M, Selloni A, Diebold U 2013 Science 341 988Google Scholar

    [93]

    Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H, Gao H J 2020 Science 367 189Google Scholar

    [94]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar

    [95]

    Roy D K, Singh A 1995 Int. J. Mod. Phys. B 9 3039Google Scholar

    [96]

    Crespo V, Maldonado A, Galvis J A, Kulkarni P, Guillamon I, Rodrigo J G, Suderow H, Vieira S, Banerjee S, Rodiere P 2012 Physica C 479 19Google Scholar

    [97]

    Wu B H, Hassan S A, Gong W J, Xu X F, Wang C R, Cao J C 2021 J. Phys.: Condens. Mat. 33 025301Google Scholar

    [98]

    Yazdani A, Jones B A, Lutz C P, Crommie M F, Eigler D M 1997 Science 275 1767Google Scholar

    [99]

    Farinacci L, Ahmadi G, Reecht G, Ruby M, Bogdanoff N, Peters O, Heinrich B W, von Oppen F, Franke K J 2018 Phys. Rev. Lett. 121 196803Google Scholar

    [100]

    Meservey R, Tedrow P M 1994 Phys. Rep. 238 173Google Scholar

    [101]

    Eltschka M, Jack B, Assig M, Kondrashov O V, Skvortsov M A, Etzkorn M, Ast C R, Kern K 2014 Nano Lett. 14 7171Google Scholar

    [102]

    Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, Gao H J 2021 Nat. Commun. 12 1348Google Scholar

    [103]

    Jiang K, Dai X, Wang Z 2019 Phys. Rev. X 9 011033

    [104]

    Xing Y Q, Chen H, Hu B, Ye Y H, Hofer W A, Gao H J 2022 Nano Res. 15 1466Google Scholar

    [105]

    Mier C, Verlhac B, Gamier L, Robles R, Limot L, Lorente N, Choi D J 2021 J. Phys. Chem. Lett. 12 2983Google Scholar

    [106]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [107]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [108]

    Collins J L, Tadich A, Wu W K, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S J, Mo S K, Adam S, Yang S Y A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar

    [109]

    Bork J, Zhang Y H, Diekhoner L, Borda L, Simon P, Kroha J, Wahl P, Kern K 2011 Nat. Phys. 7 901Google Scholar

    [110]

    Ormaza M, Abufager P, Verlhac B, Bachellier N, Bocquet M L, Lorente N, Limot L 2017 Nat. Commun. 8 1974Google Scholar

    [111]

    Verlhac B, Bachellier N, Garnier L, Ormaza M, Abufager P, Robles R, Bocquet M L, Ternes M, Lorente N, Limot L 2019 Science 366 623Google Scholar

    [112]

    Yang K, Paul W, Natterer F D, Lado J L, Bae Y, Willke P, Choi T, Ferron A, Fernandez-Rossier J, Heinrich A J, Lutz C P 2019 Phys. Rev. Lett. 122 227203Google Scholar

    [113]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [114]

    Vonlohneysen H, Pietrus T, Portisch G, Schlager H G, Schroder A, Sieck M, Trappmann T 1994 Phys. Rev. Lett. 72 3262Google Scholar

    [115]

    Huang H, Padurariu C, Senkpiel J, Drost R, Yeyati A L, Cuevas J C, Kubala B, Ankerhold J, Kern K, Ast C R 2020 Nat. Phys. 16 1227

    [116]

    Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar

    [117]

    Choi T, Paul W, Rolf-Pissarczyk S, Macdonald A J, Natterer F D, Yang K, Willke P, Lutz C P, Heinrich A J 2017 Nat. Nanotechnol. 12 420Google Scholar

    [118]

    Veldman L M, Farinacci L, Rejali R, Broekhoven R, Gobeil J, Coffey D, Ternes M, Otte A F 2021 Science 372 964Google Scholar

    [119]

    Ormaza M, Bachellier N, Faraggi M N, Verlhac B, Abufager P, Ohresser P, Joly L, Romeo M, Scheurer F, Bocquet M L, Lorente N, Limot L 2017 Nano Lett. 17 1877Google Scholar

    [120]

    Frota H O 1992 Phys. Rev. B 45 1096Google Scholar

    [121]

    Choi D J, Abufager P, Limot L, Lorente N 2017 J. Chem. Phys. 146 092309Google Scholar

    [122]

    Choi D J, Guissart S, Onnaza M, Bachellier N, Bengone O, Simon P, Limot L 2016 Nano Lett. 16 6298Google Scholar

    [123]

    van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M, Tarucha S, Kouwenhoven L P 2000 Science 289 2105Google Scholar

    [124]

    Loth S, von Bergmann K, Ternes M, Otte A F, Lutz C P, Heinrich A J 2010 Nat. Phys. 6 340Google Scholar

    [125]

    Muenks M, Jacobson P, Ternes M, Kern K 2017 Nat. Commun. 8 14119Google Scholar

    [126]

    Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R Q, Ho W 2019 Science 364 670Google Scholar

    [127]

    Liu Y W, Hao C Y, He L 2022 Phys. Rev. Appl. 17 034013Google Scholar

    [128]

    Zhang Q, Zhang Y, Hou Y, Xu R, Jia L, Huang Z, Hao X, Zhou J, Zhang T, Liu L, Xu Y, Gao H J, Wang Y 2022 Nano Lett. 22 1190Google Scholar

    [129]

    Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, Zettl A 2011 Phys. Rev. B 83 245433Google Scholar

    [130]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204Google Scholar

    [131]

    Zhu S Z, Li T 2014 ACS Nano 8 2864Google Scholar

    [132]

    Kim D H, Koo J Y, Kim J J 2003 Phys. Rev. B 68 113406Google Scholar

    [133]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [134]

    Wang G C, Bao L H, Pei T F, Ma R S, Zhang Y Y, Sun L L, Zhang G Y, Yang H F, Li J J, Gu C Z, Du S X, Pantelides S T, Schrimpf R D, Gao H J 2016 Nano Lett. 16 6870Google Scholar

    [135]

    Guo H, Zhang R Z, Li H, Wang X Y, Lu H L, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S X, Pantelides S T, Gao H J 2020 Nano Lett. 20 2674Google Scholar

    [136]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 3991Google Scholar

    [137]

    Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [138]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [139]

    Chen H, Que Y, Tao L, Zhang Y Y, Lin X, Xiao W, Wang D, Du S, Pantelides S T, Gao H J 2018 Nano Res. 11 3722Google Scholar

    [140]

    Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [141]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [142]

    Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S X, Gao H J 2019 Nano Lett. 19 6323Google Scholar

    [143]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [144]

    Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [145]

    Zhao A D, Wang B 2020 Appl. Mater. 8 030701Google Scholar

    [146]

    Yan J H, Ma J J, Wang A W, Ma R S, Wu L M, Wu Z B, Liu L, Bao L H, Huan Q, Gao H J 2021 Rev. Sci. Instrum. 92 103702Google Scholar

    [147]

    Ma R, Huan Q, Wu L, Yan J, Guo W, Zhang Y Y, Wang S, Bao L, Liu Y, Du S, Pantelides S T, Gao H J 2017 Nano Lett. 17 5291Google Scholar

    [148]

    李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar

    Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar

    [149]

    Jiang N, Zarkadoula E, Narang P, Maksov A, Kravchenko I, Borisevich A, Jesse S, Kalinin S V 2017 MRS Bull. 42 653Google Scholar

    [150]

    Dyck O, Ziatdinov M, Lingerfelt D B, Unocic R R, HudaK B M, Lupini A R, Jesse S, Kalinin S V 2019 Nat. Rev. Mater. 4 497Google Scholar

    [151]

    Krull A, Hirsch P, Rother C, Schiffrin A, Krull C 2020 Commu. Phys. 3 54Google Scholar

    [152]

    Rashidi M, Wolkow R A 2018 ACS Nano 12 5185Google Scholar

    [153]

    Roccapriore K M, Zou Q, Zhang L Z, Xue R, Yan J Q, Ziatdinov M, Fu M M, Mandrus D G, Yoon M, Sumpter B G, Gai Z, Kalinin S V 2021 ACS Nano 15 11806Google Scholar

    [154]

    Zhao J, Swartz L A, Lin W F, Schlenoff P S, Frommer J, Schlenoff J B, Liu G Y 2016 ACS Nano 10 5656Google Scholar

    [155]

    Zhao P, Wang R, Lien D H, Zhao Y, Kim H, Cho J, Ahn G H, Javey A 2019 ADv. Mater. 31 1900136Google Scholar

    [156]

    Fan P, Gao J, Mao H, Geng Y, Yan Y, Wang Y, Goel S, Luo X 2022 Micromachines 13 228Google Scholar

    [157]

    Garcia R, Knoll A W, Riedo E 2014 Nat. Nanotechnol. 9 577Google Scholar

  • 图 1  扫描隧道显微操纵调控低维材料的四种操纵模式 (a) 探针局域电场调控; (b) 探针-样品垂直间距调控; (c) 探针无损形态调控; (d) 探针裁剪刻蚀调控

    Fig. 1.  Four types of low-dimension material manipulation by STM: (a) Tip-induced local electrical field; (b) controlled tip approach/retract; (c) tip-induced non-destructive geometry manipulation; (d) tip-induced kirigami or lithography.

    图 2  STM探针施加脉冲电压在低维材料表面诱发相变[21,27,70,74] (a) 1T-TaS2施加2.8 V的脉冲电压后在绝缘相上产生的多畴金属相的STM图, 插图为金属相中的电荷密度波超晶格; (b) 1T-TaS2上电子态空间分布, 发生从金属相到绝缘相的转变; (c) 2H-NbSe2通过脉冲电压产生的两种不同相; (d) 脉冲电压在In2Se3中诱发可逆相变; (e) 脉冲电压在Cu(111)面上的Fe岛中诱发的从反铁磁序(蓝色区域)向铁磁序(橙色区域)的转变, 红圈为探针施加脉冲电压的位置

    Fig. 2.  STM tip pulse induced phase transition on surface of low-dimension materials[21,27,70,74] : (a) Topographical image of the multi-domain metallic phase, where the inset is a zoomed-in view of the charge density wave in the metallic phase; (b) linecut from metallic phase to insulating phase; (c) pulse-induced two different phase in 2H-NbSe2; (d) pulse-induced reversible phase transition in In2Se3; (e) switching of antiferromagnetic (blue region) and ferromagnetic (orange region) areas with electric field pulses on Fe islands grown on Cu(111), the red circle marks the tip pulse position.

    图 3  STM 探针施加脉冲电压诱导分子脱氢, 实现局域自旋态的调控[14-16] (a) MnPc分子脱氢前后形貌图; (b) MnPc分子脱氢前后的dI/dV谱; (c) 逐步脱去2个、4个、6个与8个氢原子的MnPc分子的STM图像, 显示通过脉冲电压有效改变分子的结构对称性; (d) 逐步脱去2个、4个、6个与8个氢原子的MnPc分子中心上测量的dI/dV谱, 显示出了不同的Kondo共振特征, 其中红色曲线为dI/dV谱的拟合曲线

    Fig. 3.  Dehydrogenation and local spin manipulation by applying STM pulse[14-16]: (a) Topography of MnPc before and after dehydration; (b) dI/dV spectrum of MnPc molecule before and after dehydration; (c) STM images of –2H, –4H, –6H and –8H MnPc molecules, respectively; (d) corresponding dI/dV spectra of –2H, –4H, –6H and -8H MnPc molecules, showing different Kondo resonance feature. The red curve is a fitting to the experiment data.

    图 4  STM 探针施加脉冲电压调控的低维材料晶格重构和能带结构[20,86] (a) 4种典型的不同小转角的双层石墨烯, 在转角为0.87°的图中标明了AA, AB, BA堆垛和畴界; (b) 转角为1.13°的晶格重构双层转角石墨烯施加3 V, 0.1 s的脉冲电压前后的STM形貌图; (c), (d) 图(b)中AA堆垛区实心点处采得的dI/dV谱; (e)硅烯上施加脉冲电压后产生的三角形畴

    Fig. 4.  Band structure and lattice reconstruction manipulated by applying STM pulse in low-dimension materials[20,86]: (a) Typical STM images of four different TBGs. The AA, AB, BA, and domain wall regions are marked in the figure of TBG with 0.87° twist angle; (b) STM image of a 1.13° TBG showing the reconstructed structure before and after applying a pulse of 3 V for 0.1 s; (c), (d) typical dI/dV spectrum taken at the same position marked by solid dots of AA stacking area in (b); (e) triangular domain formed after a tip pulse applied on the silicene surface.

    图 5  STM探针施加局域电场调控石墨烯/氮化硼异质结与PdSe2中的缺陷态[23,90] (a) 石墨烯/氮化硼异质结表面的dI/dV空间分布图, 表面存在多种缺陷; (b) 施加第一次脉冲电压(Vs = 5 V, t = 10 s)后(a)中同一区域的dI/dV空间分布图, 蓝色箭头代表缺陷出现, 红色代表消失, 绿色代表电极性改变; (c) 施加第2次参数相近的脉冲电压后的dI/dV空间分布图, 脉冲电压施加的位置为该区域的中心; (d) PdSe2中原子缺陷的STM图; (e) –2 V, 50 pA扫描得到的同一区域STM图; (f) 1 V, 50 pA扫描得到同一区域STM图

    Fig. 5.  Manipulating defect states in the graphene/BN heterostructure and PdSe2 surface by local electrical field induced by STM tip[23,90]: (a) A dI/dV map acquired on graphene/BN surface exhibiting various defects; (b) dI/dV maps of the same region in (a) after the first tip pulse (Vs = 5 V, t = 10 s ), red arrows mark the disappearance of defects, blue arrows mark the appearance of defects, and green arrows mark dot defects that have changed the sign of their charge; (c) dI/dV map after the second tip pulse with similar parameter, the tip pulse is applied at the center of the region; (d) STM image of atomic defect in PdSe2; (e) STM image of the same region at –2 V, 50 pA; (f) STM image of the same region at 1 V, 50 pA.

    图 6  STM探针施加脉冲电压对MnGe(111)表面自旋纹理的调控[17] (a)—(d) 对靶形自旋纹理施加脉冲电压后的SP-STM图, 每张图之间均施加脉冲电压. 图(c)和图(d)中的红圈标记出被激发的向错的移动和湮灭, 蓝色点标记同一原子位, 以分辨靶心的移动

    Fig. 6.  Manipulation of surface spin texture of MnGe(111) via STM pulses[17]: (a)–(d) SP-STM images of the target spin texture in different configurations. Between each image, pulses were applied with the STM tip. The red circle in (c) and (d) indicates a disclination defect that is generated, moved and annihilated. The blue dot represents the same atomically registered fixed point in the images to resolve movements of the target core.

    图 7  调控探针样品的隧穿耦合强度实现零偏压电导平台的观测[93] (a) 通过下压探针改变隧穿电导强度的STM示意图, 图中为2.0 T, 78 mK下的dI/dV空间分布图; (b) 隧穿电导强度随探针下压的三维图, 图中只展示了(–5.0, 0.2) meV能量范围内的数据; (c) 图(b)的二维彩色电导图, 能量范围为(–1.5, 1.5) meV; (d) 零偏压的水平切线图, 电导平台值为(0.64 ± 0.04)G0

    Fig. 7.  Experimental observation of zero-bias conductance plateau in MZM through precisely controling of the tip-sample coupling[93]: (a) A schematic of variable tunnel conductance by tip-approaching. Inset: A zero-bias dI/dV map under 2.0 T and 78 mK. (b) A three-dimensional plot of tunnel coupling dependent measurement. Only the data points in the energy range of (–5.0, 0.2) meV are shown. (c) A color-scale plot of (b) within the energy range of (–1.5, 1.5) meV. (d) A horizontal line-cut at the zero-bias. The conductance plateau equals to (0.64 ± 0.04)G0.

    图 8  可控调节探针与样品垂直间距调控磁交换相互作用, 诱导多种激发态之间的可逆转变[102,104] (a) FTS表面Fe原子上的压探针示意图; (b) 0 T磁场下隧穿电导在第二类铁原子上下压探针的变化, 红色箭头标记YSR态出现基本简并的位置; (c) 与图(b)类似, 磁场为6 T; (d) 6 T磁场下第二类铁原子上隧穿电导随抬高探针的变化; (e) 在FePc分子上下压探针的示意图; (f) 下压Nb探针实现I型到II型转变的dI/dV谱瀑布图; (g) 下压Nb探针实现的II型向I型的转变图; (h) 连续增加和减少隧穿势垒下FePc分子中心的dI/dV彩色幅值图

    Fig. 8.  Transition between distinct excitation states induced by changing exchange interaction through controling of tip-sample distance [102,104]: (a) Schematic of approaching tip on a Fe atom of FTS surface; (b) tunnel-barrier conductance plot on approaching tip on a type-II Fe adatom under 0 T, the red arrow indicates the position of an accidental near degeneracy of the YSR states; (c) a similar plot to panel (b) with a magnetic field of 6 T; (d) tunnel-barrier conductance plot on withdrawing tip on a type-II Fe adatom under 6 T; (e) schematic of approaching tip on a FePc molecule; (f) approaching Nb tip induced transition from type-I FePc to type-II FePc; (g) approaching Nb tip induced transition from type-II FePc to type-I FePc; (h) a color-scale plot of dI/dV spectra of center of the FePc molecule under a combined process of increasing and decreasing tunnel barrier values, respectively.

    图 9  可控调节探针与样品垂直间距引入静电势[108] (a) Si(111)面上层状Na3Bi上下压探针调控电场示意图; (b)不同探针样品距离下双层Na3Bi上测得的dI/dV谱, 其中A, B, C分别对应的探针高度(电场强度)为1.45 nm (0.83 V·nm–1), 1.07 nm (1.12 V·nm–1), 1.02 nm (1.18 V·nm–1); (c)从dI/dV中得到的带隙关于电场的函数, 红色方形和黑色三角分别代表单层和双层Na3Bi

    Fig. 9.  Electrical potential induced by controling distance between tip and sample [108]: (a) Schematic of manipulation electrical field by approaching tip on few layer Na3Bi on Si(111); (b) dI/dV spectra taken on bilayer (BL) Na3Bi at different tip--sample separations (electric fields) as labelled on the figure, where A, B and C correspond to tip heights (electric fields) of 1.45 nm (0.83 V·nm–1), 1.07 nm (1.12 V·nm–1) and 1.02 nm (1.18 V·nm–1), respectively; (c) bandgap extracted from dI/dV spectra as a function of electric field for monolayer ML (ML, red squares) and BL (black triangles) Na3Bi.

    图 10  精准调节磁性探针-样品垂直间距, 实现对磁性探针与磁性单原子的交换相互作用的调控[109,112,115] (a) 实验示意图: 探针和表面上各有1个Co原子, 构成双杂质近藤系统; (b) 探针和样品表面都有Co原子时测得的增强Kondo特征dI/dV谱; (c) 在隧穿状态和点接触模式下dI/dV谱随探针样品距离变化; (d) 在超导样品的磁性原子上方下压YSR探针示意图; (e) Shiba-Shiba电流峰面积随正常态电导的变化图; (f) 表面Ti原子受到的总塞曼能随磁性探针-Ti原子距离的变化; (g) 交变磁场随探针-Ti原子距离的变化

    Fig. 10.  Manipulation of exchange interaction by precisely controling the distance between magnetic tip and single magnetic atom[109,112,115]: (a) Schematic experiment set-up: one cobalt atom on the tip and one on the surface; (b) spectra taken with a tip with a cobalt atom on top of a second cobalt atom on the surface show the two resonances superimposed; (c) spectra as a function of tip-sample distance in the tunnelling and point-contact regimes; (d) schematic of approaching a YSR-tip on a magnetic atom on superconducting surface; (e) the dependence of the direct Shiba-Shiba current peak area on the normal-state conductance; (f) the total Zeeman energy of a single Ti atom under a magnetic tip as a function of the tip-Ti distance; (g) ac magnetic field as a function of tip-Ti distance.

    图 11  精准控制探针-样品垂直间距实现对磁性单分子中自旋的探测与调控[110,111,126] (a) 隧穿模式(红色曲线)和接触模式(蓝色曲线)不同z的dI/dV谱线; (b) 下压Nc分子探针示意图; (c), (d) 探针位于Fe原子上方测得的随探针下压的d2I/dV2谱的强度分布与瀑布图; (e) 在Co岛的Co原子上方下压Nc探针测得的d2I/dV 2谱; (f) STM-IET谱随着探针高度的变化图

    Fig. 11.  Sensing and manipulation of spin in a magnetic molecule through precisely approaching the STM tip[110,111,126]: (a) dI/dV spectra in the tunnel (bottom panel) and contact (top panel) regimes for several z; (b) schematic of approaching a Nc-coated tip; (c), (d) intensity (c) and waterfall plot (d) of d2I/dV 2 spectra acquired with the tip positioned above a Fe atom; (e) d2I/dV 2 spectra acquired with the tip approaching above a Co atom of the island; (f) variation of STM-IET spectra with different tip-sample distance.

    图 12  STM平移、旋转和剪裁二维材料[45,46,128] (a) STM实现GNI的可控旋转; (b) STM操纵实现悬浮在Au(111)面上的石墨烯薄层的旋转; (c) STM旋转双层石墨烯上的1T-NbSe2岛; (d) STM平移双层石墨烯上的1T-NbSe2

    Fig. 12.  Translation and rotation of two-dimensional materials through STM manipulation[45,46,128]: (a) STM tip-manipulated GNI rotation; (b) STM tip-manipulated floating graphene flake rotation on Au(111); (c) rotation of 1T-NbSe2 island by STM; (d) translation of 1T-NbSe2 island by STM.

    图 13  利用STM探针提拉低维材料[35,52,53] (a) STM提拉链状分子示意图; (b) 电流-探针高度曲线图; (c) 在Au(111)面上完成聚合的聚芴高分子STM图; (d) 电流-探针高度曲线图; (e) 原子分辨单层石墨烯在不同尖端样品距离下的三维形貌图; (f) 解释石墨烯薄膜力学行为的模型; (g) 应力导致石墨烯晶格大小改变图

    Fig. 13.  Lifting low-dimensional materials by a STM tip[35,52,53]: (a) Scheme of the chain molecule pulling by STM; (b) current as a function of tip height for different experiments; (c) overview STM image after polymerization on Au(111) surface; (d) tunneling current as a function of the tip height; (e) three-dimensional representations of an atomically resolved monolayer graphene at different tip-sample distance; (f) model explaining the mechanical behavior of the graphene; (g) lattice constant change in graphene induced by strain.

    图 14  STM对石墨烯纳米岛的可逆折叠[47] (a) GNI折叠示意和实验结果图; (b) 一系列展示沿各方向可逆折叠展开单个GNI的STM图; (c) 通过折叠GNI得到的不同转角莫尔图案示意图; (d), (e) 沿两个不同方向折叠GNI得到的管状手性结构

    Fig. 14.  Reversable folding of graphene nanoisland by STM manipulation[47]: (a) Schematic and experiment results of GNI folding; (b) series of STM images showing repeatable folding and unfolding of a single GNI along different directions; (c) schematic of moiré pattern of different twisted angles; (d), (e) STM images showing structural configurations of two chiral tubular structures acquired by folding the same GNI along different directions.

    图 15  应用STM探针刻蚀技术精准构筑特定形状的纳米结构[54,55,61] (a) STM刻蚀的10 nm宽, 120 nm长的纳米带的3D图; (b) STM刻蚀的8 nm宽, 弯折30°连接扶手椅型和zigzag型的石墨烯纳米带结; (c) STM刻蚀的5 nm宽扶手椅型边界的石墨烯纳米带; (d) STM刻蚀的6.5 nm宽zigzag型边界的石墨烯纳米带; (e) H:Si(100)面经STM氢刻蚀后的STM图; (f) 基于STM氢刻蚀制备的器件.

    Fig. 15.  Specific nanostructures patterned by precise STM lithography[54,55,61]: (a) 3D STM image of a 10-nm-wide and 120-nm-long graphene nanoribbon; (b) an 8-nm-wide 30° GNR bent junction connecting an armchair and a zigzag ribbon; (c) STM image of a 5-nm-wide graphene nanoribbon with armchair edge orientation; (d) STM image of a 6.5-nm-wide ribbon with edges of precisely zigzag orientation; (e) STM image of H:Si(100) surface after STM hydrogen lithography; (f) a device fabricated based on STM hydrogen lithography.

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [3]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [4]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [5]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013

    [6]

    Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R, Zhigadlo N D, Qi Y, Qian D, Chou F C, Xu X 2018 Chem. Mater. 30 4823Google Scholar

    [7]

    Vafek O, Vishwanath A 2014 Annu. Rev. Condens. Matter phys. 5 83Google Scholar

    [8]

    den Heijer M, Fokkema V, Saedi A, Schakel P, Rost M J 2014 Rev. Sci. Instrum. 85 055007Google Scholar

    [9]

    Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar

    [10]

    李宇昂, 吴迪, 王栋立, 胡昊, 潘毅 2021 物理学报 70 020701Google Scholar

    Li Y A, Wu D, Wang L D, Hu H, Pan Y 2021 Acta Phys. Sin. 70 020701Google Scholar

    [11]

    Castellanos-Gomez A, Rubio-Bollinger G, Garnica M, Barja S, Vazquez de Parga A L, Miranda R, Agrait N 2012 Ultramicroscopy 122 1Google Scholar

    [12]

    Baek H, Ha J, Zhang D M, Natarajan B, Winterstein J P, Sharma R, Hu R W, Wang K F, Ziemak S, Paglione J, Kuk Y, Zhitenev N B, Stroscio J A 2015 Phys. Rev. B 92 094510Google Scholar

    [13]

    Zhao A D, Li Q X, Chen L, Xiang H J, Wang W H, Pan S, Wang B, Xiao X D, Yang J L, Hou J G, Zhu Q S 2005 Science 309 1542Google Scholar

    [14]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J 2013 Sci. Rep. 3 1210Google Scholar

    [15]

    Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Song S R, Du S X, Min O Y, Hofer W A, Neto A H C, Gao H J 2015 Phys. Rev. Lett. 114 126601Google Scholar

    [16]

    Yang K, Liu L W, Zhang L Z, Xiao W D, Fei X M, Chen H, Du S X, Ernst K H, Goo H J 2014 ACS Nano 8 2246Google Scholar

    [17]

    Repicky J, Wu P K, Liu T, Corbett J P, Zhu T C, Cheng S Y, Ahmed A S, Takeuchi N, Guerrero-Sanchez J, Randeria M, Kawakami R K, Gupta J A 2021 Science 374 abd9225Google Scholar

    [18]

    Chang K, Kuster F, Miller B J, Ji J R, Zhang J L, Sessi P, Barraza-Lopez S, Parkin S S P 2020 Nano Lett. 20 6590Google Scholar

    [19]

    Zhao Y X, Zhou X F, Zhang Y, He L 2021 Phys. Rev. Lett. 127 266801Google Scholar

    [20]

    Liu Y W, Su Y, Zhou X F, Yin L J, Yan C, Li S Y, Yan W, Han S, Fu Z Q, Zhang Y, Yang Q, Ren Y N, He L 2020 Phys. Rev. Lett. 125 236102Google Scholar

    [21]

    Gerhard L, Yamada T K, Balashov T, Takacs A F, Wesselink R J H, Dane M, Fechner M, Ostanin S, Ernst A, Mertig I, Wulfhekel W 2010 Nat. Nanotechnol. 5 792Google Scholar

    [22]

    Zhang Q Z, Wen H F, Adachi Y, Miyazaki M, Sugawara Y, Xu R, Cheng Z H, Li Y J 2019 J. Phys. Chem. C 123 22595Google Scholar

    [23]

    Wong D, Velasco Jr J, Ju L, Lee J, Kahn S, Tsai H Z, Germany C, Taniguchi T, Watanabe K, Zettl A, Wang F, Crommie M F 2015 Nat. Nanotechnol. 10 949Google Scholar

    [24]

    Sullivan S P, Schmeders A, Mbugua S K, Beebe T P 2005 Langmuir 21 1322Google Scholar

    [25]

    Mao J H, Jiang Y H, Moldovan D, Li G H, Watanabe K, Taniguchi T, Masir M R, Peeters F M, Andrei E Y 2016 Nat. Phys. 12 545Google Scholar

    [26]

    Chan Y, Khan S B, Mahmood A, Saleemi A S, Lian Z, Ren Y, Zeng X M, Lee S L 2020 J. Phys. Chem. C 124 815Google Scholar

    [27]

    Wang H, Lee J, Dreyer M, Barker B I 2009 J. Phys.: Condens. Mat. 21 265005Google Scholar

    [28]

    Chen W, Madhavan V, Jamneala T, Crommie M F 1998 Phys. Rev. Lett. 80 1469Google Scholar

    [29]

    Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z, Gao H J 2021 Nature 599 222Google Scholar

    [30]

    Chen H, Xiao W, Wu X, Yang K, Gao H J 2014 J. Vac. Sci. Technol. B 32 061801Google Scholar

    [31]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X M, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [32]

    Kuester F, Montero A M, Guimaraes F S M, Brinker S, Lounis S, Parkin S S P, Sessi P 2021 Nat. Commun. 12 1108Google Scholar

    [33]

    Jack B, Eltschka M, Assig M, Etzkorn M, Ast C R, Kern K 2016 Phys. Rev. B 93 020504Google Scholar

    [34]

    Jack B, Eltschka M, Assig M, Hardock A, Etzkorn M, Ast C R, Kern K 2015 Appl. Phys. Lett. 106 013109Google Scholar

    [35]

    Mashoff T, Pratzer M, Geringer V, Echtermeyer T J, Lemme M C, Liebmann M, Morgenstern M 2010 Nano Lett. 10 461Google Scholar

    [36]

    Xu P, Yang Y R, Barber S D, Ackerman M L, Schoelz J K, Qi D, Kornev I A, Dong L F, Bellaiche L, Barraza-Lopez S, Thibado P M 2012 Phys. Rev. B 85 121406Google Scholar

    [37]

    Klimov N N, Jung S, Zhu S Z, Li T, Wright C A, Solares S D, Newell D B, Zhitenev N B, Stroscio J A 2012 Science 336 1557Google Scholar

    [38]

    Zhu S Z, Huang Y, Klimov N N, Newell D B, Zhitenev N B, Stroscio J A, Solares S D, Li T 2014 Phys. Rev. B 90 075426Google Scholar

    [39]

    Breitwieser R, Hu Y C, Chao Y C, Li R J, Tzeng Y R, Li L J, Liou S C, Lin K C, Chen C W, Pai W W 2014 Carbon 77 236Google Scholar

    [40]

    Neek-Amal M, Xu P, Schoelz J K, Ackerman M L, Barber S D, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 4962Google Scholar

    [41]

    Yankowitz M, Watanabe K, Taniguchi T, San-Jose P, LeRoy B J 2016 Nat. Commun. 7 13168Google Scholar

    [42]

    Georgi A, Nemes-Incze P, Carrillo-Bastos R, Faria D, Kusminskiy S V, Zhai D W, Schneider M, Subramaniam D, Mashoff T, Freitag N M, Liebmann M, Pratzer M, Wirtz L, Woods C R, Gorbachey R V, Cao Y, Novoselov K S, Sandier N, Morgenstern M 2017 Nano Lett. 17 2240Google Scholar

    [43]

    Breitwieser R, Hu Y C, Chao Y C, Tzeng Y R, Liou S C, Lin K C, Chen C W, Pai W W 2017 Phys. Rev. B 96 085433Google Scholar

    [44]

    van der Lit J, Jacobse P H, Vanmaekelbergh D, Swart I 2015 New J. Phys. 17 053013Google Scholar

    [45]

    Leicht P, Zielke L, Bouvron S, Moroni R, Voloshina E, Hammerschmidt L, Dedkov Y S, Fonin M 2014 ACS Nano 8 3735Google Scholar

    [46]

    Chen H, Bao D L, Wang D F, Que Y D, Xiao W D, Zhang Y Y, Sun J T, Du S X, Gao H J 2020 Nano Res. 13 3286Google Scholar

    [47]

    Chen H, Zhang X L, Zhang Y Y, Wang D F, Bao D L, Que Y D, Xiao W D, Du S X, Ouyang M, Pantelides S T, Gao H J 2019 Science 365 1036Google Scholar

    [48]

    Thomas L K, Reichling M 2019 Beilstein J. Nanotechnol. 10 804Google Scholar

    [49]

    Shi L J, Yang L Z, Deng J Q, Tong L H, Wu Q L, Zhang L, Zhang L J, Yin L J, Qin Z H 2020 Carbon 165 169Google Scholar

    [50]

    Yin L J, Wang W X, Feng K K, Nie J C, Xiong C M, Dou R F, Naugle D G 2015 Nanoscale 7 14865Google Scholar

    [51]

    Yu M, Xu W, Benjalal Y, Barattin R, Lægsgaard E, Stensgaard I, Hliwa M, Bouju X, Gourdon A, Joachim C J N R 2009 Nano Res. 2 254Google Scholar

    [52]

    Koch M, Ample F, Joachim C, Grill L 2012 Nat. Nanotechnol. 7 713Google Scholar

    [53]

    Lafferentz L, Ample F, Yu H, Hecht S, Joachim C, Grill L 2009 Science 323 1193Google Scholar

    [54]

    Magda G Z, Jin X Z, Hagymasi I, Vancso P, Osvath Z, Nemes-Incze P, Hwang C Y, Biro L P, Tapaszto L 2014 Nature 514 608Google Scholar

    [55]

    Tapaszto L, Dobrik G, Lambin P, Biro L P 2008 Nat. Nanotechnol. 3 397Google Scholar

    [56]

    Liu G Y, Xu S, Qian Y 2000 Acc. Chem. Res. 33 457Google Scholar

    [57]

    Pavlova T V, Shevlyuga V M, Andryushechkin B V, Zhidomirov G M, Eltsov K N 2020 Appl. Surf. Sci. 509 145235Google Scholar

    [58]

    Nemes-Incze P, Tapasztó L, Magda G Z, Osváth Z, Dobrik G, Jin X, Hwang C, Biró L P 2014 Appl. Surf. Sci. 291 48Google Scholar

    [59]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [60]

    Ruess F J, Pok W, Goh K E J, Hamilton A R, Simmons M Y 2007 Phys. Rev. B 75 121303Google Scholar

    [61]

    Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64Google Scholar

    [62]

    Fuechsle M, Mahapatra S, Zwanenburg F A, Friesen M, Eriksson M A, Simmons M Y 2010 Nat. Nanotechnol. 5 502Google Scholar

    [63]

    Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G, Simmons M Y 2012 Nat. Nanotechnol. 7 242Google Scholar

    [64]

    Schofield S R, Curson N J, Simmons M Y, Ruess F J, Hallam T, Oberbeck L, Clark R G 2003 Phys. Rev. Lett. 91 136104Google Scholar

    [65]

    Weber B, Tan Y H M, Mahapatra S, Watson T F, Ryu H, Rahman R, Hollenberg L C L, Klimeck G, Simmons M Y 2014 Nat. Nanotechnol. 9 430Google Scholar

    [66]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [67]

    Butler S Z, Hollen S M, Cao L Y, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [68]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [69]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [70]

    Ma L G, Ye C, Yu Y J, Lu X F, Niu X H, Kim S, Feng D L, Tomanek D, Son Y W, Chen X H, Zhang Y B 2016 Nat. Commun. 7 10956Google Scholar

    [71]

    Cho D, Cheon S, Kim K S, Lee S H, Cho Y H, Cheong S W, Yeom H W 2016 Nat. Commun. 7 10453Google Scholar

    [72]

    Song X, Liu L, Chen Y, Yang H, Huang Z, Hou B, Hou Y, Han X, Yang H, Zhang Q, Zhang T, Zhou J, Huang Y, Zhang Y, Gao H J, Wang Y 2022 Nat. Commun. 13 1843Google Scholar

    [73]

    Chen Z, Fu W, Wang L, Yu W, Li H H, Tan C K Y, Abdelwahab I, Shao Y, Su C L, Sun M Z, Huang B L, Loh K P 2021 Adv. Sci. 8 2100713Google Scholar

    [74]

    Zhang Z M, Nie J H, Zhang Z H, Yuan Y, Fu Y S, Zhang W H 2022 Adv. Mater. 34 2106951Google Scholar

    [75]

    Wang Y F, Kroger J, Berndt R, Hofer W A 2009 J. Am. Chem. Soc. 131 3639Google Scholar

    [76]

    Pivetta M, Ternes M, Patthey F, Schneider W D 2007 Phys. Rev. Lett. 99 126104Google Scholar

    [77]

    Strozecka A, Soriano M, Pascual J I, Palacios J J 2012 Phys. Rev. Lett. 109 147202Google Scholar

    [78]

    Gopakumar T G, Tang H, Morillo J, Berndt R 2012 J. Am. Chem. Soc. 134 11844Google Scholar

    [79]

    Chen H, Pope T, Wu Z Y, Wang D F, Tao L, Bao D L, Xiao W D, Zhang J L, Zhang Y Y, Du S X, Gao S, Pantelides S T, Hofer W A, Gao H J 2017 Nano Lett. 17 4929Google Scholar

    [80]

    Xu P, Neek-Amal M, Barber S D, Schoelz J K, Ackerman M L, Thibado P M, Sadeghi A, Peeters F M 2014 Nat. Commun. 5 3720Google Scholar

    [81]

    Li S Y, Bai K K, Zuo W J, Liu Y W, Fu Z Q, Wang W X, Zhang Y, Yin L J, Qiao J B, He L 2018 Phys. Rev. Appl. 9 054031Google Scholar

    [82]

    Yoo H, Engelke R, Carr S, Fang S A, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [83]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [84]

    Li Z, Zhuang J C, Wang L, Feng H F, Gao Q, Xu X, Hao W C, Wang X L, Zhang C, Wu K H, Dou S X, Chen L, Hu Z P, Du Y 2018 Sci. Adv. 4 eaau4511Google Scholar

    [85]

    Li Z, Zhuang J C, Chen L, Ni Z Y, Liu C, Wang L, Xu X, Wang J O, Pi X D, Wang X L, Du Y, Wu K H, Dou S X 2016 ACS Cent. Sci. 2 517Google Scholar

    [86]

    Chen L, Li H, Feng B J, Ding Z J, Qiu J L, Cheng P, Wu K H, Meng S 2013 Phys. Rev. Lett. 110 085504Google Scholar

    [87]

    Chen J, Du Y, Li Z, Li W B, Feng B J, Qiu J L, Cheng P, Dou S X, Chen L, Wu K H 2015 Sci. Rep. 5 13590Google Scholar

    [88]

    Xing Y, Shen J, Chen H, Huang L, Gao Y, Zheng Q, Zhang Y Y, Li G, Hu B, Qian G, Cao L, Zhang X, Fan P, Ma R, Wang Q, Yin Q, Lei H, Ji W, Du S, Yang H, Wang W, Shen C, Lin X, Liu E, Shen B, Wang Z, Gao H J 2020 Nat. Commun. 11 5613Google Scholar

    [89]

    Setvin M, Schmid M, Diebold U 2015 Phys. Rev. B 91 195403Google Scholar

    [90]

    Nguyen G D, Liang L B, Zou Q, Fu M M, Oyedele A D, Sumpter B G, Liu Z, Gai Z, Xiao K, Li A P 2018 Phys. Rev. Lett. 121 086101Google Scholar

    [91]

    Selcuk S, Selloni A 2014 J. Chem. Phys. 141 084705Google Scholar

    [92]

    Setvin M, Aschauer U, Scheiber P, Li Y F, Hou W Y, Schmid M, Selloni A, Diebold U 2013 Science 341 988Google Scholar

    [93]

    Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H, Gao H J 2020 Science 367 189Google Scholar

    [94]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar

    [95]

    Roy D K, Singh A 1995 Int. J. Mod. Phys. B 9 3039Google Scholar

    [96]

    Crespo V, Maldonado A, Galvis J A, Kulkarni P, Guillamon I, Rodrigo J G, Suderow H, Vieira S, Banerjee S, Rodiere P 2012 Physica C 479 19Google Scholar

    [97]

    Wu B H, Hassan S A, Gong W J, Xu X F, Wang C R, Cao J C 2021 J. Phys.: Condens. Mat. 33 025301Google Scholar

    [98]

    Yazdani A, Jones B A, Lutz C P, Crommie M F, Eigler D M 1997 Science 275 1767Google Scholar

    [99]

    Farinacci L, Ahmadi G, Reecht G, Ruby M, Bogdanoff N, Peters O, Heinrich B W, von Oppen F, Franke K J 2018 Phys. Rev. Lett. 121 196803Google Scholar

    [100]

    Meservey R, Tedrow P M 1994 Phys. Rep. 238 173Google Scholar

    [101]

    Eltschka M, Jack B, Assig M, Kondrashov O V, Skvortsov M A, Etzkorn M, Ast C R, Kern K 2014 Nano Lett. 14 7171Google Scholar

    [102]

    Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, Gao H J 2021 Nat. Commun. 12 1348Google Scholar

    [103]

    Jiang K, Dai X, Wang Z 2019 Phys. Rev. X 9 011033

    [104]

    Xing Y Q, Chen H, Hu B, Ye Y H, Hofer W A, Gao H J 2022 Nano Res. 15 1466Google Scholar

    [105]

    Mier C, Verlhac B, Gamier L, Robles R, Limot L, Lorente N, Choi D J 2021 J. Phys. Chem. Lett. 12 2983Google Scholar

    [106]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [107]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [108]

    Collins J L, Tadich A, Wu W K, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S J, Mo S K, Adam S, Yang S Y A, Fuhrer M S, Edmonds M T 2018 Nature 564 390Google Scholar

    [109]

    Bork J, Zhang Y H, Diekhoner L, Borda L, Simon P, Kroha J, Wahl P, Kern K 2011 Nat. Phys. 7 901Google Scholar

    [110]

    Ormaza M, Abufager P, Verlhac B, Bachellier N, Bocquet M L, Lorente N, Limot L 2017 Nat. Commun. 8 1974Google Scholar

    [111]

    Verlhac B, Bachellier N, Garnier L, Ormaza M, Abufager P, Robles R, Bocquet M L, Ternes M, Lorente N, Limot L 2019 Science 366 623Google Scholar

    [112]

    Yang K, Paul W, Natterer F D, Lado J L, Bae Y, Willke P, Choi T, Ferron A, Fernandez-Rossier J, Heinrich A J, Lutz C P 2019 Phys. Rev. Lett. 122 227203Google Scholar

    [113]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39Google Scholar

    [114]

    Vonlohneysen H, Pietrus T, Portisch G, Schlager H G, Schroder A, Sieck M, Trappmann T 1994 Phys. Rev. Lett. 72 3262Google Scholar

    [115]

    Huang H, Padurariu C, Senkpiel J, Drost R, Yeyati A L, Cuevas J C, Kubala B, Ankerhold J, Kern K, Ast C R 2020 Nat. Phys. 16 1227

    [116]

    Baumann S, Paul W, Choi T, Lutz C P, Ardavan A, Heinrich A J 2015 Science 350 417Google Scholar

    [117]

    Choi T, Paul W, Rolf-Pissarczyk S, Macdonald A J, Natterer F D, Yang K, Willke P, Lutz C P, Heinrich A J 2017 Nat. Nanotechnol. 12 420Google Scholar

    [118]

    Veldman L M, Farinacci L, Rejali R, Broekhoven R, Gobeil J, Coffey D, Ternes M, Otte A F 2021 Science 372 964Google Scholar

    [119]

    Ormaza M, Bachellier N, Faraggi M N, Verlhac B, Abufager P, Ohresser P, Joly L, Romeo M, Scheurer F, Bocquet M L, Lorente N, Limot L 2017 Nano Lett. 17 1877Google Scholar

    [120]

    Frota H O 1992 Phys. Rev. B 45 1096Google Scholar

    [121]

    Choi D J, Abufager P, Limot L, Lorente N 2017 J. Chem. Phys. 146 092309Google Scholar

    [122]

    Choi D J, Guissart S, Onnaza M, Bachellier N, Bengone O, Simon P, Limot L 2016 Nano Lett. 16 6298Google Scholar

    [123]

    van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M, Tarucha S, Kouwenhoven L P 2000 Science 289 2105Google Scholar

    [124]

    Loth S, von Bergmann K, Ternes M, Otte A F, Lutz C P, Heinrich A J 2010 Nat. Phys. 6 340Google Scholar

    [125]

    Muenks M, Jacobson P, Ternes M, Kern K 2017 Nat. Commun. 8 14119Google Scholar

    [126]

    Czap G, Wagner P J, Xue F, Gu L, Li J, Yao J, Wu R Q, Ho W 2019 Science 364 670Google Scholar

    [127]

    Liu Y W, Hao C Y, He L 2022 Phys. Rev. Appl. 17 034013Google Scholar

    [128]

    Zhang Q, Zhang Y, Hou Y, Xu R, Jia L, Huang Z, Hao X, Zhou J, Zhang T, Liu L, Xu Y, Gao H J, Wang Y 2022 Nano Lett. 22 1190Google Scholar

    [129]

    Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, Zettl A 2011 Phys. Rev. B 83 245433Google Scholar

    [130]

    Blees M K, Barnard A W, Rose P A, Roberts S P, McGill K L, Huang P Y, Ruyack A R, Kevek J W, Kobrin B, Muller D A, McEuen P L 2015 Nature 524 204Google Scholar

    [131]

    Zhu S Z, Li T 2014 ACS Nano 8 2864Google Scholar

    [132]

    Kim D H, Koo J Y, Kim J J 2003 Phys. Rev. B 68 113406Google Scholar

    [133]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [134]

    Wang G C, Bao L H, Pei T F, Ma R S, Zhang Y Y, Sun L L, Zhang G Y, Yang H F, Li J J, Gu C Z, Du S X, Pantelides S T, Schrimpf R D, Gao H J 2016 Nano Lett. 16 6870Google Scholar

    [135]

    Guo H, Zhang R Z, Li H, Wang X Y, Lu H L, Qian K, Li G, Huang L, Lin X, Zhang Y Y, Ding H, Du S X, Pantelides S T, Gao H J 2020 Nano Lett. 20 2674Google Scholar

    [136]

    Huang L, Zhang Y F, Zhang Y Y, Xu W Y, Que Y D, Li E, Pan J B, Wang Y L, Liu Y Q, Du S X, Pantelides S T, Gao H J 2017 Nano Lett. 17 3991Google Scholar

    [137]

    Li G, Zhang L Z, Xu W Y, Pan J B, Song S R, Zhang Y, Zhou H T, Wang Y L, Bao L H, Zhang Y Y, Du S X, Ouyang M, Pantelides S T, Gao H J 2018 Adv. Mater. 30 1804650Google Scholar

    [138]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [139]

    Chen H, Que Y, Tao L, Zhang Y Y, Lin X, Xiao W, Wang D, Du S, Pantelides S T, Gao H J 2018 Nano Res. 11 3722Google Scholar

    [140]

    Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [141]

    Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, Gao H J 2017 Adv. Mater. 29 1605407Google Scholar

    [142]

    Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S X, Gao H J 2019 Nano Lett. 19 6323Google Scholar

    [143]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [144]

    Deng J L, Xia B Y, Ma X C, Chen H Q, Shan H, Zhai X F, Li B, Zhao A D, Xu Y, Duan W H, Zhang S C, Wang B, Hou J G 2018 Nat. Mater. 17 1081Google Scholar

    [145]

    Zhao A D, Wang B 2020 Appl. Mater. 8 030701Google Scholar

    [146]

    Yan J H, Ma J J, Wang A W, Ma R S, Wu L M, Wu Z B, Liu L, Bao L H, Huan Q, Gao H J 2021 Rev. Sci. Instrum. 92 103702Google Scholar

    [147]

    Ma R, Huan Q, Wu L, Yan J, Guo W, Zhang Y Y, Wang S, Bao L, Liu Y, Du S, Pantelides S T, Gao H J 2017 Nano Lett. 17 5291Google Scholar

    [148]

    李彦, 郑琦, 常霄, 黄立, 林晓, 程志海, 高鸿钧 2021 物理学报 70 136802Google Scholar

    Li Y, Zheng Q, Chang X, Huang L, Lin X, Cheng Z H, Gao H J 2021 Acta Phys. Sin. 70 136802Google Scholar

    [149]

    Jiang N, Zarkadoula E, Narang P, Maksov A, Kravchenko I, Borisevich A, Jesse S, Kalinin S V 2017 MRS Bull. 42 653Google Scholar

    [150]

    Dyck O, Ziatdinov M, Lingerfelt D B, Unocic R R, HudaK B M, Lupini A R, Jesse S, Kalinin S V 2019 Nat. Rev. Mater. 4 497Google Scholar

    [151]

    Krull A, Hirsch P, Rother C, Schiffrin A, Krull C 2020 Commu. Phys. 3 54Google Scholar

    [152]

    Rashidi M, Wolkow R A 2018 ACS Nano 12 5185Google Scholar

    [153]

    Roccapriore K M, Zou Q, Zhang L Z, Xue R, Yan J Q, Ziatdinov M, Fu M M, Mandrus D G, Yoon M, Sumpter B G, Gai Z, Kalinin S V 2021 ACS Nano 15 11806Google Scholar

    [154]

    Zhao J, Swartz L A, Lin W F, Schlenoff P S, Frommer J, Schlenoff J B, Liu G Y 2016 ACS Nano 10 5656Google Scholar

    [155]

    Zhao P, Wang R, Lien D H, Zhao Y, Kim H, Cho J, Ahn G H, Javey A 2019 ADv. Mater. 31 1900136Google Scholar

    [156]

    Fan P, Gao J, Mao H, Geng Y, Yan Y, Wang Y, Goel S, Luo X 2022 Micromachines 13 228Google Scholar

    [157]

    Garcia R, Knoll A W, Riedo E 2014 Nat. Nanotechnol. 9 577Google Scholar

  • [1] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [2] 郑玉强, 王世勇. 低维石墨烯体系中的离域磁性. 物理学报, 2022, 71(18): 188101. doi: 10.7498/aps.71.20220895
    [3] 马赛群, 邓奥林, 吕博赛, 胡成, 史志文. 低维材料极化激元及其耦合特性. 物理学报, 2022, 71(12): 127104. doi: 10.7498/aps.71.20220272
    [4] 李宇昂, 吴迪, 王栋立, 胡昊, 潘毅. 基于原子操纵技术的人工量子结构研究. 物理学报, 2021, 70(2): 020701. doi: 10.7498/aps.70.20201501
    [5] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [6] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [7] 尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖. 表/界面水的扫描探针技术研究进展. 物理学报, 2019, 68(1): 016802. doi: 10.7498/aps.68.20182201
    [8] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [9] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [10] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [12] 肖文德, 刘立巍, 杨锴, 张礼智, 宋博群, 杜世萱, 高鸿钧. 氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控. 物理学报, 2015, 64(7): 076802. doi: 10.7498/aps.64.076802
    [13] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [16] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 周旺民, 王崇愚. 低维半导体材料应变分布. 物理学报, 2004, 53(12): 4308-4313. doi: 10.7498/aps.53.4308
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  1312
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-04-07
  • 上网日期:  2022-06-13
  • 刊出日期:  2022-06-20

表面原子操纵与物性调控研究进展

  • 1. 中国科学院物理研究所, 纳米物理与器件实验室, 北京 100190
  • 2. 中国科学院大学物理科学学院, 北京 100049
  • 3. 中国科学院拓扑量子计算卓越创新中心, 北京 100190
  • 4. 松山湖材料实验室, 东莞 523808
  • 通信作者: 陈辉, hchenn04@iphy.ac.cn ; 高鸿钧, hjgao@iphy.ac.cn
    基金项目: 国家自然科学基金(批准号: 61888102, 52022105)和中国科学院B类先导专项(批准号: XDB30000000)资助的课题.

摘要: 利用扫描隧道显微镜可以在单原子层次上对材料进行操纵, 改变其结构与特性, 实现原子级结构与物性的精准调控. 近年来, 扫描隧道显微镜原子操纵技术被广泛用于新型低维材料的精准构筑与物性调控. 本文主要介绍应用原子操纵技术对低维材料物性调控的最新研究进展, 总结了4种主要探针操纵模式: 1)探针局域电场模式; 2)调节探针-样品垂直间距模式; 3)无损形态调控模式; 4)可控裁剪刻蚀模式. 通过这些探针操纵模式引入局域的电场、磁场、应力场等, 实现在单原子层次上对低维材料的电荷密度波、近藤效应、非弹性隧穿效应、马约拉纳束缚态等新奇物性进行精准地调控.

English Abstract

    • 低维材料由于电子运动维度受限而展现出拓扑绝缘体[1,2]、拓扑半金属[3-6]、反常量子霍尔效应[7] 等多种新奇量子物性. 这些物性对点缺陷、边界、畴界、层间界面等局域原子环境以及局域电场、磁场等因素非常敏感. 因此, 实现原子级精准的物性调控是低维材料物性研究的一个重要研究方向.

      扫描隧道显微镜(scanning tunneling microscope, STM)是一项在单原子层次上研究物质表面局域电子态的精确成像技术[8], 被广泛用于纳米科技领域中. 在STM成像过程中, 表面原子的局域态密度受扫描电压、隧穿结深度和探针与表面原子相互作用等因素影响. 因此, 除原子级精准的局域电子态成像外, STM也被用于低维材料的物性研究与调控中. 例如, 利用扫描探针对单个原子的吸引与排斥力, 在特定材料的表面以晶格为步长“搬运”单个原子或分子, 实现STM原子操纵技术. 1990年, IBM Almaden 实验室的Eigler课题组[9]首次利用STM原子操纵技术, 在Ni金属表面摆出由Xe原子组成的“IBM”字样. 经过数十年的发展, STM原子操纵技术已经能够以原子或分子为单元构筑常规生长或微加工方法难以制备的人工量子结构[10].

      与特定表面上单个原子体系不同, 石墨烯、有机分子等新型低维材料体系中原子数量多, 且尺度在几十纳米到百纳米级别, 应用STM原子操纵技术对低维材料的结构及其物性进行原子级精准调控具有一定的挑战性. 经过长期的积累, 除了基于扫描探针与单个原子间的吸引或排斥力的传统操纵模式, 研究人员逐步拓展了STM的操纵模式, 例如通过给材料表面施加局域电场, 调控材料的导电性、磁性甚至原子堆叠方式; 通过精细调节探针与样品的垂直间距诱导出新奇的激发态; 利用STM探针与样品的作用力, 旋转、提拉或者折叠层状材料, 控制样品的旋转角度与层间耦合强度, 局域改变材料的能带结构等. 结合这些操纵模式以及STM原子级的空间分辨能力, 即可实现对低维材料新奇物性的原子级精确调控.

      本文将介绍STM原子操纵技术与低维材料物性调控的最新研究进展, 总结目前在低维材料物性调控研究中所应用的4种STM探针操纵模式, 并分别介绍应用这些模式对低维材料物性原子级精准调控的代表性工作.

    • STM探针对低维材料物性调控有4种操纵模式, 分别为: 探针局域电场调控, 探针-样品垂直间距调控, 无损形态调控, 可控裁剪刻蚀(图1).

      图  1  扫描隧道显微操纵调控低维材料的四种操纵模式 (a) 探针局域电场调控; (b) 探针-样品垂直间距调控; (c) 探针无损形态调控; (d) 探针裁剪刻蚀调控

      Figure 1.  Four types of low-dimension material manipulation by STM: (a) Tip-induced local electrical field; (b) controlled tip approach/retract; (c) tip-induced non-destructive geometry manipulation; (d) tip-induced kirigami or lithography.

      在应用STM进行原子成像前, 需要对探针进行预处理, 确保探针尖端具有稳定原子结构与电子态. 常见的处理探针方式之一为对STM探针施加脉冲电压 (tip pulse), 使附着在探针尖端不规则原子团簇脱落, 相应地优化探针尖端电子态[11]. 在应用脉冲电压改变探针状态的过程中, 研究人员发现脉冲电压可以引入局域热效应[12]或静电力[13-16], 从而影响样品表面磁性结构[17]、铁电性质[18]、晶格结构[19-21]与局域能带结构[19], 实现对低维材料物性的精准调控[14-16,22-27] . 这种操纵模式被称为探针局域电场调控(图1(a)).

      第2种探针处理方式是精准调控探针与样品间距的技术, 在标准样品(如Au(111) [28])上实现可控“撞针”, 使探针尖端上附着的原子种类、结构和数量发生改变, 改变探针的电子态; 同样, 这种处理探针的方法也可以拓展为一种调控物性的操纵模式, 即通过压电陶瓷精确调节探针与样品垂直间距, 从而精确调控探针电子波函数和样品电子波函数的交叠程度, 实现对样品局域电子态的精准调控. 此外, STM探针除用Au, Pt, Ir, W等惰性金属材料, 也可以将惰性金属材料的STM探针在超导或者磁性材料表面可控“撞针”, 用超导[29]、磁性[30]材料或者原子团簇实现STM探针的功能化. 例如, 逐步减小超导STM探针与超导材料表面的间距, 可以构建约瑟夫森隧穿异质结 [29,31-34]. 这种调控模式被称为探针-样品垂直间距调控(图1(b)).

      传统的单原子操纵技术是利用探针与原子间的吸引力或排斥力实现对单个原子空间位置精准的控制. 低维材料包含大量的原子, 应用探针的吸引或者排斥力很难对其进行整体移动. 但是STM单原子操纵技术依然可以拓展到一些与衬底表面具有弱耦合与高弹性系数的低维材料中去, 实现低维材料的形态(包括空间位置、取向与形变等)的无损操纵. 对低维材料进行形态操纵的基本原理是通过增加隧穿电流或降低样品电压, 以减小探针样品距离, 使探针与被操纵的二维材料之间形成稳定的相互作用力, 克服样品与衬底之间的相互吸引势, 如图1(c)所示. 在该状态下可以通过STM探针与二维材料的相互作用在样品中引入应力[35-44]以调控物性. 在较小的探针样品距离下扫描, 可能实现对一些低维材料的旋转[45,46]. 继续下压探针使得隧穿电流信号发生跳变, 即从隧穿模式(tunneling mode)转为接触模式(contact mode). 在此模式下可以利用探针对低维材料进行操纵. 如对石墨烯岛进行折叠[46-50], 构建人工纳米结构[46,47] ; 对分子或纳米带进行提拉等操纵[51-53], 测量单个纳米带或分子的电导[52,53], 调控能带结构[44]. 这是第3种调控模式, 被称为无损形态调控(图1(c)).

      STM接触模式扫描过程中, 低维材料的形态并非总是无损改变的. 探针与样品的强相互作用会导致低维材料的原子键断裂及晶格结构产生破坏, 即样品被STM探针刻蚀或者裁剪(图1(d)). STM探针的刻蚀或者裁剪作用可以被用于制备特定构型的纳米结构或器件单元, 结合原子级精确测量, 实现纳米尺度的结构与电子态调控[54-65]. 这是第4种调控模式, 被称为探针剪裁刻蚀调控.

    • 低维材料具有丰富的晶格结构与相应的电子结构. 例如, 过渡金属硫化物可形成1T, 1H, 2H, 3R等多种结构相[66-69]. 有些相在低温条件下仍处于亚稳态. 研究人员可以通过调控探针的局域电场, 实现不同相及其电子态间的相互转换. Ma等[70]和Cho等[71]研究发现, 在1T-TaS2表面施以大小合适的脉冲电压, 可以局域地实现1T-TaS2的绝缘基态向多畴金属态的可逆转变. 在多畴金属态区域(图2(a))和绝缘态的交界处可观测到电子态的突变(图2(b)). Ma等[70]将这一转变归因于脉冲电压导致样品局域淬火效应. 在2H-NbSe2[27] (图2(c))和单层1T-NbSe2薄膜[72]的STM研究中, 探针脉冲电压可以诱导类似的相变现象. 此外, 应用探针局域电场诱导相变也拓展到 In2Se3[73,74](图2(d))、Cu(111) 面上的Fe岛[21](图2(e))等体系中.

      图  2  STM探针施加脉冲电压在低维材料表面诱发相变[21,27,70,74] (a) 1T-TaS2施加2.8 V的脉冲电压后在绝缘相上产生的多畴金属相的STM图, 插图为金属相中的电荷密度波超晶格; (b) 1T-TaS2上电子态空间分布, 发生从金属相到绝缘相的转变; (c) 2H-NbSe2通过脉冲电压产生的两种不同相; (d) 脉冲电压在In2Se3中诱发可逆相变; (e) 脉冲电压在Cu(111)面上的Fe岛中诱发的从反铁磁序(蓝色区域)向铁磁序(橙色区域)的转变, 红圈为探针施加脉冲电压的位置

      Figure 2.  STM tip pulse induced phase transition on surface of low-dimension materials[21,27,70,74] : (a) Topographical image of the multi-domain metallic phase, where the inset is a zoomed-in view of the charge density wave in the metallic phase; (b) linecut from metallic phase to insulating phase; (c) pulse-induced two different phase in 2H-NbSe2; (d) pulse-induced reversible phase transition in In2Se3; (e) switching of antiferromagnetic (blue region) and ferromagnetic (orange region) areas with electric field pulses on Fe islands grown on Cu(111), the red circle marks the tip pulse position.

    • 低维材料表面上磁性单分子的局域自旋态对于单原子吸附、结构对称性非常敏感. 因此, 探针脉冲电压可以诱导单原子脱附或者化学键断裂等, 实现对单个分子的自旋调控. 早在2005年, 中国科学技术大学侯建国研究组[13]研究发现, 通过探针脉冲电压可实现酞菁钴(CoPc)分子的脱氢, 降低分子与基底的耦合强度从而恢复分子的自旋, 并观察到近藤效应 (Kondo effect). 此后, 国内外许多研究组应用类似的局域电压脉冲方法, 实现了单个分子的电子态的调控[75].

      随着探针脉冲电压调控技术的不断发展, 可实现对单个磁性分子自旋电子态的可逆调控[14]. 通过在STM探针上施加脉冲电压, 对Au(111)表面上酞菁锰(MnPc)分子中心氢原子的吸附和脱附可以进行 “关”和“开”的可逆操纵, 进而调控MnPc分子的近藤效应, 实现了单个自旋量子态的可控和可逆转变(图3(a)图3(b))[16]. 利用单分子自旋可逆“开关”的近藤效应, 可实现单分子尺度(1.5 nm大小的存储点和1.5 nm的最小点间距)的量子信息存储, 为未来在量子信息存储和计算等领域的应用开辟了新的途径. 此外, 应用脉冲电压引入的局域电场打断氢原子与分子的化学键[76], 可以控制单个分子上特定位置上脱氢. Liu等[15]利用这种基于探针局域脉冲电压的“原子手术”, 设计出原子尺度g因子空间不均匀的“功能分子”体系. 实验上通过对STM探针施加脉冲电压, 实现了Au(111)表面MnPc分子中的4个苯环进行逐步脱氢(图3(c)). 脱氢后的苯环部分发生弯曲, 伸向基底. 脱氢后的MnPc分子展现出扩展的Kondo效应, 即在分子的非磁性原子部分也可探测到Kondo共振(图3(d)). 测量脱氢后分子不同位置的Kondo共振峰在磁场下的劈裂, 得到朗德g因子的空间分布[15]. 除H原子外, 应用探针脉冲电压技术也实现了对CO[77]、Cl[78,79]等原子的精准调控.

      图  3  STM 探针施加脉冲电压诱导分子脱氢, 实现局域自旋态的调控[14-16] (a) MnPc分子脱氢前后形貌图; (b) MnPc分子脱氢前后的dI/dV谱; (c) 逐步脱去2个、4个、6个与8个氢原子的MnPc分子的STM图像, 显示通过脉冲电压有效改变分子的结构对称性; (d) 逐步脱去2个、4个、6个与8个氢原子的MnPc分子中心上测量的dI/dV谱, 显示出了不同的Kondo共振特征, 其中红色曲线为dI/dV谱的拟合曲线

      Figure 3.  Dehydrogenation and local spin manipulation by applying STM pulse[14-16]: (a) Topography of MnPc before and after dehydration; (b) dI/dV spectrum of MnPc molecule before and after dehydration; (c) STM images of –2H, –4H, –6H and –8H MnPc molecules, respectively; (d) corresponding dI/dV spectra of –2H, –4H, –6H and -8H MnPc molecules, showing different Kondo resonance feature. The red curve is a fitting to the experiment data.

    • 二维层状材料具有原子级厚度的层状结构和较弱的层间耦合, 其层间耦合强度变化可能诱导出不同的堆垛结构, 衍生出丰富的物态[68,69]. STM探针局域电场技术提供了一种精确调控二维层状材料层间耦合的有效手段, 以实现其物态的精确操控. 例如, 在石墨烯表面改变隧穿条件即可局域地改变石墨烯表面形状[80], 或施加脉冲电压也能带来丰富的物性变化[19,20,25,81]. 其中, 脉冲电压可调控双层转角石墨烯(twisted bilayer graphene, TBG)的层间距, 等效于加压实验, 使TBG中2个范霍夫奇点能量间距发生周期为百秒量级的振荡[19]. 对于小转角(约1°)的TBG, 层间晶格错位会引入表面重构[82], Liu等[20]提出, 可通过脉冲电压调控该表面重构, 进而调控TBG的平带. 实验上获得了多种小转角和莫尔图案(moiré pattern)的TBG(图4(a)), 在转角为0.87°的TBG上观测到由表面重构引起的3种堆垛区(AA, AB, BA堆垛)的面积变化, 其中AA堆垛区面积显著减小[83]. 重构表面上AB和BA堆垛区之间会形成连接AA堆垛区的畴界[20]. 在转角为1.13°的TBG中, 观测到重构和未重构共存的区域. 对该区域施加脉冲电压, TBG未重构区域发生重构(图4(b)), 同时能带结构发生变化: TBG的平带从空占据变为满占据, 且重构区域中原本存于导带和平带之间的带隙消失(图4(c)图4(d)). 因此, 在魔角附近的TBG中稳定存在重构和未重构2种结构, 且二者的相互转化可以通过脉冲电压实现.

      图  4  STM 探针施加脉冲电压调控的低维材料晶格重构和能带结构[20,86] (a) 4种典型的不同小转角的双层石墨烯, 在转角为0.87°的图中标明了AA, AB, BA堆垛和畴界; (b) 转角为1.13°的晶格重构双层转角石墨烯施加3 V, 0.1 s的脉冲电压前后的STM形貌图; (c), (d) 图(b)中AA堆垛区实心点处采得的dI/dV谱; (e)硅烯上施加脉冲电压后产生的三角形畴

      Figure 4.  Band structure and lattice reconstruction manipulated by applying STM pulse in low-dimension materials[20,86]: (a) Typical STM images of four different TBGs. The AA, AB, BA, and domain wall regions are marked in the figure of TBG with 0.87° twist angle; (b) STM image of a 1.13° TBG showing the reconstructed structure before and after applying a pulse of 3 V for 0.1 s; (c), (d) typical dI/dV spectrum taken at the same position marked by solid dots of AA stacking area in (b); (e) triangular domain formed after a tip pulse applied on the silicene surface.

      其他单元素二维材料体系也能够通过施加局域脉冲电场改变层间耦合, 诱导出结构重构与电子态转变. 例如, 通过局域脉冲电场在硅烯中诱导出不同层间的晶格失配, 产生筹界、莫尔图案等新奇纳米结构[84-86], 甚至层状剥离[87]. 图4(e)展示的是在硅烯上通过施加脉冲电压产生新畴的STM形貌图演化[86].

    • 在材料制备过程中, 由于温度、压强等多种不确定因素的影响, 在晶体中形成并随机分布多种类型的缺陷结构. 缺陷可以分为点缺陷、线缺陷、面缺陷和体缺陷. 晶格在缺陷附近发生畸变、对称性破缺等效应, 引起局域电子态显著变化, 并产生局域的激发态, 被称为缺陷态. 低维材料缺陷态的研究有助于应用缺陷工程调控低维材料的能带结构, 是近年低维材料研究的热点之一[23,27,88-90]. STM探针引入的局域电场, 可改变缺陷中的空间位置与电荷极性, 或者诱导产生新缺陷, 实现对低维材料缺陷态的精准调控[23,90].

      Wong等[23]利用STM研究并调控了六方氮化硼 (hexagonal boron nitride, HBN)的本征缺陷. 他们发现STM探针引入的局域电势可以激发缺陷中的载流子隧穿通过缺陷间的势垒, 诱导缺陷生成、消失或改变电荷极性. 在dI/dV 空间分布图图中可以观测到HBN表面随机分布的直径大约20 nm的亮、暗或者环状缺陷, 其中亮和暗缺陷分别带正电荷和负电荷(图5(a)). 将探针悬停在缺陷上方大约1 nm处, 施加大小为5 V, 持续时间为10 s的脉冲电压, 多数带负电荷的缺陷消失(图5(b)), 施加第2次大小相近的脉冲电压后, 多数消失的缺陷又重新被观测到(图5(c)). 在施加脉冲电压后, 带负电荷的缺陷更倾向于转变为电中性, 而环状、最暗、最亮的缺陷则不被脉冲电压改变. 研究者推测这些缺陷和下层石墨烯直接接触, 而石墨烯的局域化学势阻碍了电子转移.

      图  5  STM探针施加局域电场调控石墨烯/氮化硼异质结与PdSe2中的缺陷态[23,90] (a) 石墨烯/氮化硼异质结表面的dI/dV空间分布图, 表面存在多种缺陷; (b) 施加第一次脉冲电压(Vs = 5 V, t = 10 s)后(a)中同一区域的dI/dV空间分布图, 蓝色箭头代表缺陷出现, 红色代表消失, 绿色代表电极性改变; (c) 施加第2次参数相近的脉冲电压后的dI/dV空间分布图, 脉冲电压施加的位置为该区域的中心; (d) PdSe2中原子缺陷的STM图; (e) –2 V, 50 pA扫描得到的同一区域STM图; (f) 1 V, 50 pA扫描得到同一区域STM图

      Figure 5.  Manipulating defect states in the graphene/BN heterostructure and PdSe2 surface by local electrical field induced by STM tip[23,90]: (a) A dI/dV map acquired on graphene/BN surface exhibiting various defects; (b) dI/dV maps of the same region in (a) after the first tip pulse (Vs = 5 V, t = 10 s ), red arrows mark the disappearance of defects, blue arrows mark the appearance of defects, and green arrows mark dot defects that have changed the sign of their charge; (c) dI/dV map after the second tip pulse with similar parameter, the tip pulse is applied at the center of the region; (d) STM image of atomic defect in PdSe2; (e) STM image of the same region at –2 V, 50 pA; (f) STM image of the same region at 1 V, 50 pA.

      Nguyen等[90]发现设置较高的偏压扫描值, 即增加STM探针的局域电场, 可有效地操纵PdSe2上的Se原子缺陷. PdSe2表面上随机分布的Se原子缺陷数在应用负电压(–2 V, 50 pA)进行探针扫描后显著增加(图5(e), 蓝色圆圈). 相反, PdSe2表面应用正电压(1 V, 50 pA)进行探针扫描后多数针尖诱导的Se原子缺陷消失(图5(f), 黑色圆圈). 由于PdSe2中的缺陷行为和TiO2中的O缺陷十分类似[91,92], 因此该STM探针调控缺陷态的方式有望用于缺陷可调的纳米器件等相关研究中.

    • 在一些特定的低维材料体系中, 磁有序结构对局域电场非常敏感, 可被STM探针的局域脉冲电场精准调控. 2021年, Repicky等[17]通过自旋极化(spin-polarized, SP) STM在手性磁体MnGe薄膜表面上观测到拓扑自旋纹理 (topological spin texture), 并成功通过脉冲电压实现了表面磁有序结构的可逆调控. 在螺旋磁性序(图6(a))中心施加大小为2 V、持续时间为0.5 s的脉冲电压后, 表面拓扑电荷密度发生显著变化, 出现向错缺陷(disclination defect), 同时磁性序中心(core center)发生移动(图6中蓝色点标志). 随后施加连续的脉冲电压, 又导致了向错缺陷消失, 并恢复到施加脉冲电压前的螺旋磁性序(图6(b)(d)).

      图  6  STM探针施加脉冲电压对MnGe(111)表面自旋纹理的调控[17] (a)—(d) 对靶形自旋纹理施加脉冲电压后的SP-STM图, 每张图之间均施加脉冲电压. 图(c)和图(d)中的红圈标记出被激发的向错的移动和湮灭, 蓝色点标记同一原子位, 以分辨靶心的移动

      Figure 6.  Manipulation of surface spin texture of MnGe(111) via STM pulses[17]: (a)–(d) SP-STM images of the target spin texture in different configurations. Between each image, pulses were applied with the STM tip. The red circle in (c) and (d) indicates a disclination defect that is generated, moved and annihilated. The blue dot represents the same atomically registered fixed point in the images to resolve movements of the target core.

    • 在量子隧穿模型中, 探针与样品垂直方向间距的改变直接影响两者间的耦合强度. 2020年, Zhu等[93]在FeTe0.55Se0.45 (FTS) 表面上通过调节探针样品间的隧穿耦合强度研究了马约拉纳零能模(Majorana zero mode, MZM)电导值的演化, 观察到了近量子化的电导平台. 理论研究表明, MZM的电导平台来源Andreev共振隧穿[94-96]. 当探针与超导样品发生隧穿, 若电压保持在超导能隙以内, 此时电子的隧穿在超导样品表面反射回1个空穴(Andreev反射), 在探针与样品间的隧穿会形成稳定的双势垒结构. 在双势垒结构中, 若隧穿过程受到马约拉纳的电子-空穴对称性保护, 则产生对称的双势垒, 发生Andreev共振隧穿, 形成2e2/h量子化电导[97]. 在实验过程中, 将探针置于磁场引入的磁通涡旋中心处, 固定样品电压, 连续改变设定电流值使得探针可控靠近样品表面, 获得连续改变的隧穿电导GN (图7(a)). 在下压探针的同时, 测量dI/dV谱及探针与样品间的相对高度(图7(b)图7(c)). 在针尖下压过程中, 零能峰没有发生劈裂或者移动, 且dI/dV电导逐渐增大至饱和值并展现出清晰的电导平台特征, 为铁基超导中存在马约拉纳零能模提供了关键性实验证据. 相比之下, 其余的所有平庸电子态, dI/dV电导随着探针不断下压会持续增大, 无饱和迹象. 通过分析零偏压的dI/dV电导值与隧穿耦合强度的关系图可得电导平台约为(0.64 ± 0.04)G0 (图7(d)).

      图  7  调控探针样品的隧穿耦合强度实现零偏压电导平台的观测[93] (a) 通过下压探针改变隧穿电导强度的STM示意图, 图中为2.0 T, 78 mK下的dI/dV空间分布图; (b) 隧穿电导强度随探针下压的三维图, 图中只展示了(–5.0, 0.2) meV能量范围内的数据; (c) 图(b)的二维彩色电导图, 能量范围为(–1.5, 1.5) meV; (d) 零偏压的水平切线图, 电导平台值为(0.64 ± 0.04)G0

      Figure 7.  Experimental observation of zero-bias conductance plateau in MZM through precisely controling of the tip-sample coupling[93]: (a) A schematic of variable tunnel conductance by tip-approaching. Inset: A zero-bias dI/dV map under 2.0 T and 78 mK. (b) A three-dimensional plot of tunnel coupling dependent measurement. Only the data points in the energy range of (–5.0, 0.2) meV are shown. (c) A color-scale plot of (b) within the energy range of (–1.5, 1.5) meV. (d) A horizontal line-cut at the zero-bias. The conductance plateau equals to (0.64 ± 0.04)G0.

    • 在低维材料表面的单个原子或者分子吸附体系中, 单个磁性原子/分子的局域的激发态对其与低维材料表面的磁交换相互作用非常敏感. 通过精准地调节探针与样品垂直间距, 改变探针与单原子/分子的作用力, 可实现对单原子/分子与衬底间的交换相互作用的调控.

      超导表面的磁性杂质会在超导能隙中激发Yu-Shiba-Rusinov (YSR)态[98], 不同的交换相互作用强度会影响体系的基态与激发态. 当磁性杂质与基底交换作用较弱时, 基态为无自旋状态; 当交换相互作用较强时, 基态则为与磁性杂质自旋相反的准粒子[99]. Farinacci等[99]在Pb(111)表面吸附的卟吩铁(FeP)分子中心可控下压STM探针, 实现了对磁性分子和超导衬底间交换相互作用强度的调控. 对于介观尺度的平面薄膜隧道结, Meservey-Tedrow-Fulde (MTF)效应使探测自旋极化值成为可能[100]. 实验上只需量化隧穿电导谱中的非对称性, 即可测得隧穿结中自旋极化的绝对值. 基于以上, Eltschka等[101]利用超导探针上的塞曼效应, 在Cu(111)表面沉积的Co岛上精准探测并调控了局域自旋极化电导的绝对值.

      对于有多种激发态的低维体系, 可通过调节探针-样品垂直间距, 精准改变这些体系中磁相互作用, 实现不同激发态间的可逆转换. Fan等[102]将STM探针逐渐地靠近FTS表面上的Fe杂质原子, 调控Fe原子与基底之间的交换相互作用, 实现了YSR态与MZM间的可逆转变. 根据dI/dV谱, 低温沉积在FTS表面的铁原子可以分为两种: 一种是不随磁场变化的MZM特征, 另一种为随面外磁场变化的束缚态, 与自旋极化的YSR束缚态一致. 对于展现YSR束缚态的Fe原子, 通过逐步调节探针与Fe原子垂直方向的间距, 可以连续改变Fe原子与超导基底间的相互作用(图8(a)). 在不施加面外磁场(0 T)情况下, YSR态随探针压低向零能方向移动. 其中在部分的Fe原子上观测到YSR态随探针的下压, 呈现丰富的演化过程: 首先合并为1个零能峰, 然后又劈裂成2个能量位置对称的共振峰, 最后随着探针继续下压再次合并为零能峰且不再劈裂(图8(b)). 在6 T磁场下, 随着探针下压, 第1个零能峰(图8(b)图8(c)红色箭头所指)不再出现, 第2个零能峰依然出现(图8(c)), 保持其鲁棒性; 而随探针抬高, 零能峰又逐渐劈裂为2个YSR峰(图8(d)). 其中第1个零能峰被认为是处于量子相变点的YSR束缚态, 在磁场下会劈裂; 第2个稳定的零能峰并不随外加磁场劈裂(高达6 T), 符合MZM的性质, 和理论上预言的FTS的表面Fe杂质的交换相互作用增强导致YSR向MZM的转变一致[103].

      图  8  可控调节探针与样品垂直间距调控磁交换相互作用, 诱导多种激发态之间的可逆转变[102,104] (a) FTS表面Fe原子上的压探针示意图; (b) 0 T磁场下隧穿电导在第二类铁原子上下压探针的变化, 红色箭头标记YSR态出现基本简并的位置; (c) 与图(b)类似, 磁场为6 T; (d) 6 T磁场下第二类铁原子上隧穿电导随抬高探针的变化; (e) 在FePc分子上下压探针的示意图; (f) 下压Nb探针实现I型到II型转变的dI/dV谱瀑布图; (g) 下压Nb探针实现的II型向I型的转变图; (h) 连续增加和减少隧穿势垒下FePc分子中心的dI/dV彩色幅值图

      Figure 8.  Transition between distinct excitation states induced by changing exchange interaction through controling of tip-sample distance [102,104]: (a) Schematic of approaching tip on a Fe atom of FTS surface; (b) tunnel-barrier conductance plot on approaching tip on a type-II Fe adatom under 0 T, the red arrow indicates the position of an accidental near degeneracy of the YSR states; (c) a similar plot to panel (b) with a magnetic field of 6 T; (d) tunnel-barrier conductance plot on withdrawing tip on a type-II Fe adatom under 6 T; (e) schematic of approaching tip on a FePc molecule; (f) approaching Nb tip induced transition from type-I FePc to type-II FePc; (g) approaching Nb tip induced transition from type-II FePc to type-I FePc; (h) a color-scale plot of dI/dV spectra of center of the FePc molecule under a combined process of increasing and decreasing tunnel barrier values, respectively.

      除了低维材料上吸附的单原子体系, 单个磁性分子体系的多种激发态也可通过精准改变探针与样品垂直间距进行可逆转变. Xing等[104]在Au(111)表面的酞菁铁分子 (FePc) 上下压超导探针, 成功实现了Kondo共振隧穿和非弹性电子隧穿之间的可逆调控. 实验发现, FePc分子在Au(111)面上存在2种转角相差15°的吸附构型. 一类分子中心与探针可以观测到非弹性隧穿(inelastic electronic tunneling, IET)效应[79], 另一类展现出Kondo效应. 为了降低热激发, 并提高能量分辨率, 研究者采用了超导Nb探针[105]. 结果显示, 在分子中心上方逐步减小超导探针与分子的垂直间距, 可以诱导第一类分子和第二类分子间的相互转换(图8(f)图8(g)). 且对单个分子, 超导探针能实现对该转变的可逆调控. 以第一类FePc分子为例, 探针下压至隧穿电流为9 nA时, 其Kondo共振峰突然转变为IET谱, 且在电流增大到20 nA的过程中维持不变; 随探针抬高至隧穿电流减小9 nA时, IET谱又转变为Kondo共振峰的特征, 且在多次重复操作过程中, 分子并未发生移动, 图8(h)展示了这一可逆调控过程.

    • 一些体系的拓扑相变受到局域电场引入的静电势调控[106,107]. 例如, 通过调节探针样品的垂直间距可以实现对拓扑狄拉克半金属中拓扑相变的精准调控. Collins等[108]发现可以通过在二维拓扑绝缘体Na3Bi中调节探针与样品垂直间距来调控拓扑相变(图9(a)). 实验上把探针样品距离等效转化成电场强度, 直观地展示出静电势对Na3Bi拓扑相变的影响. 在双层Na3Bi中, 随局域静电势强度增加(下压探针), 拓扑能隙减小, 到约1.1 V·nm–1下完全闭合, 并表现出狄拉克半金属的V形特征, 然后重新打开约90 meV的能隙(图9(b)). 单层Na3Bi的能带受电场调控的行为相同. 单层和双层Na3Bi能隙受到局域静电势的调控, 能隙随电场增大先被关闭而后打开1个由于Stark效应产生的拓扑平庸能隙[108].

      图  9  可控调节探针与样品垂直间距引入静电势[108] (a) Si(111)面上层状Na3Bi上下压探针调控电场示意图; (b)不同探针样品距离下双层Na3Bi上测得的dI/dV谱, 其中A, B, C分别对应的探针高度(电场强度)为1.45 nm (0.83 V·nm–1), 1.07 nm (1.12 V·nm–1), 1.02 nm (1.18 V·nm–1); (c)从dI/dV中得到的带隙关于电场的函数, 红色方形和黑色三角分别代表单层和双层Na3Bi

      Figure 9.  Electrical potential induced by controling distance between tip and sample [108]: (a) Schematic of manipulation electrical field by approaching tip on few layer Na3Bi on Si(111); (b) dI/dV spectra taken on bilayer (BL) Na3Bi at different tip--sample separations (electric fields) as labelled on the figure, where A, B and C correspond to tip heights (electric fields) of 1.45 nm (0.83 V·nm–1), 1.07 nm (1.12 V·nm–1) and 1.02 nm (1.18 V·nm–1), respectively; (c) bandgap extracted from dI/dV spectra as a function of electric field for monolayer ML (ML, red squares) and BL (black triangles) Na3Bi.

    • 在STM探针尖端吸附分子或原子, 即制备功能化探针, 可提高探针的对特定隧穿信号的分辨率. 其中, 磁性探针是通过吸附磁性分子/原子得到的功能化探针, 常用于表面自旋探测或样品的局域磁场调控等, 在自旋电子学和磁性激发态等研究中有较多的应用[99,109-112]. 通过调节功能化探针与低维材料的相互作用力, 可以对YSR和Kondo等效应实现有效地调控.

      当金属表面存在2个相邻的磁性杂质时, 体系的基态是由自旋间的相互作用和Kondo屏蔽的竞争共同决定[109]. 虽然可以通过掺杂和加磁场调控量子相变[113,114], 但在原子级上精确调控是比较困难的. Bork等[109]在STM探针尖端吸附1个磁性Co原子, 通过改变探针与样品表面的磁性原子垂直间距, 实现了对“双磁性杂质”(two-impurity) Kondo体系中量子相变的调控(图10(a)). 首先将Au(111)表面上的Co原子吸附至探针尖端, 随后用功能化的探针在Co原子上方测量dI/dV谱, 测得增强型Kondo谱(图10(b)). 在探针下压过程中, 2个磁性原子相互靠近但未接触时, 谱仍然保持Kondo共振隧穿谱的特征. 当进入接触模式(图10(c), –30 pm)后, 零能附近的谷变成了峰. 进一步下压探针, 共振峰发生劈裂, 且劈裂程度随着探针的下压而增加. 当2个Co原子距离较远时, 其相互作用较弱, Kondo共振效应是相互独立的; 当2个Co原子互相靠近, 交换相互作用增强, 导致共振峰劈裂, 峰劈裂的程度随着相互作用的增大而增大. 上述实验成功地实现了对“双磁性杂质”Kondo效应的调控. Huang等[115]应用类似的探针下压技术, 在超导探针上吸附磁性原子(图10(d)), 成功调控了超导探针尖端磁性原子的YSR激发态与超导样品表面上吸附的单个磁性原子的YSR激发态之间的隧穿效应, 揭示了宇称保护的YSR态间的逐次隧穿现象(图10(e)), 获得了YSR激发态的寿命.

      图  10  精准调节磁性探针-样品垂直间距, 实现对磁性探针与磁性单原子的交换相互作用的调控[109,112,115] (a) 实验示意图: 探针和表面上各有1个Co原子, 构成双杂质近藤系统; (b) 探针和样品表面都有Co原子时测得的增强Kondo特征dI/dV谱; (c) 在隧穿状态和点接触模式下dI/dV谱随探针样品距离变化; (d) 在超导样品的磁性原子上方下压YSR探针示意图; (e) Shiba-Shiba电流峰面积随正常态电导的变化图; (f) 表面Ti原子受到的总塞曼能随磁性探针-Ti原子距离的变化; (g) 交变磁场随探针-Ti原子距离的变化

      Figure 10.  Manipulation of exchange interaction by precisely controling the distance between magnetic tip and single magnetic atom[109,112,115]: (a) Schematic experiment set-up: one cobalt atom on the tip and one on the surface; (b) spectra taken with a tip with a cobalt atom on top of a second cobalt atom on the surface show the two resonances superimposed; (c) spectra as a function of tip-sample distance in the tunnelling and point-contact regimes; (d) schematic of approaching a YSR-tip on a magnetic atom on superconducting surface; (e) the dependence of the direct Shiba-Shiba current peak area on the normal-state conductance; (f) the total Zeeman energy of a single Ti atom under a magnetic tip as a function of the tip-Ti distance; (g) ac magnetic field as a function of tip-Ti distance.

      此外, 下压磁性探针在电子自旋共振(electron spin resonance, EPR) STM研究中也是调控局域磁场的常见手段之一, 可实现单个原子的不同自旋量子态间的时间分辨、自旋相干变化等测量[112,116-118]. 2019年, Yang等[112]结合下压探针技术、ESR以及IET谱, 实现了磁性探针与表面磁性原子的交换相互作用的精确调控. 随着磁性探针下压, 受STM探针局域磁场作用下的Ti原子塞曼能(Zeeman energy)逐步从μeV增加到meV量级(图10(f)), 探针的交变电场在表面引入的交变磁场也随探针下压逐渐增大(图10(g)).

      吸附在表面的分子自旋主要取决于其局域轨道与基底电子态间的相互作用. Ormaza等[110]在探针尖端吸附了单个Nc(NiC2H5)分子, 通过在Fe原子上方逐渐下压STM探针, 实现了对该分子自旋从1到1/2的调控. 整个下压过程分为隧穿阶段(图11(a)中蓝色谱线)和接触阶段(图11(a)中红色谱线). 在隧穿状态下, dI/dV谱呈现出随探针下压逐步增强的非弹性自旋翻转激发态的特征[119]. 进入接触模式, 零偏压处的能隙突变为1个峰, 实验上认为是自旋为1/2的Kondo共振峰[120], 基于峰型拟合出的Kondo温度TK符合单杂质Kondo效应[121,122], 拟合得出共振振幅与自旋为1/2的半导体量子点的Kondo效应一致[123].

      图  11  精准控制探针-样品垂直间距实现对磁性单分子中自旋的探测与调控[110,111,126] (a) 隧穿模式(红色曲线)和接触模式(蓝色曲线)不同z的dI/dV谱线; (b) 下压Nc分子探针示意图; (c), (d) 探针位于Fe原子上方测得的随探针下压的d2I/dV2谱的强度分布与瀑布图; (e) 在Co岛的Co原子上方下压Nc探针测得的d2I/dV 2谱; (f) STM-IET谱随着探针高度的变化图

      Figure 11.  Sensing and manipulation of spin in a magnetic molecule through precisely approaching the STM tip[110,111,126]: (a) dI/dV spectra in the tunnel (bottom panel) and contact (top panel) regimes for several z; (b) schematic of approaching a Nc-coated tip; (c), (d) intensity (c) and waterfall plot (d) of d2I/dV 2 spectra acquired with the tip positioned above a Fe atom; (e) d2I/dV 2 spectra acquired with the tip approaching above a Co atom of the island; (f) variation of STM-IET spectra with different tip-sample distance.

      进一步, 研究人员通过精准控制探针与样品的垂直间距, 调控Nc(NiC2H5)分子修饰的探针与样品耦合强度, 测量了Cu表面的Fe原子的交换场强度和自旋极化, 并成功推广到二维结构[111]. 在吸附于Cu表面的Fe原子上方下压探针测得的二阶微分电导谱中可以观测到, 随探针逐步下压, 二阶谱中峰和谷发生劈裂(图11(c)图11(d)). 研究者认为该劈裂源于交换场所致的塞曼效应, 而峰和谷在能量上的不对称则反映了隧穿电流中自旋的不对称性[124,125]. 随后为了进一步将自旋极化的探测推广到二维体系, 研究人员选择在Cu(100)表面的Co岛上进行相同的实验. 随探针逐步压低, 二阶微分谱的峰和谷发生劈裂(图11(e)), 出现了类似在Fe原子上下压探针的结果. 该结果说明Nc分子修饰的STM探针可用于测量二维磁性材料体系的自旋极化.

      除了调控分子本身的自旋态, 通过控制功能探针的下压还能调控分子结中的交换相互作用, Czap等[126]在探针上吸附磁性环戊二烯镍分子(Ni (cyclopentadienyl)2, NiCp2), 通过下压探针技术探测并调控了与吸附于Ag(110)表面的另一磁性分子的交换相互作用(图11(f)).

    • 对于特定的材料体系, 可利用金属探针与低维材料的吸引力或排斥力, 实现对低维材料的平移和旋转. Chen等[46]利用STM原子操纵技术, 实现了对石墨烯纳米岛(graphene nanoisland, GNI)的旋转. 旋转后, 在GNI上可观测到清晰的由于两层石墨烯间的旋转产生的莫尔图案(图12(a)), 并计算得出旋转角度为3.4°. 类似的旋转技术也被应用在Leicht等[45]和Liu等[127]的工作中(图12(b)). 此外Zhang等[128]也通过STM对石墨烯衬底上的1T-NbSe2岛进行了旋转和平移(图12(c)图12(d)), 并利用此技术构建了1T-NbSe2同质结, 研究了同质结连接处的一维电子态.

      图  12  STM平移、旋转和剪裁二维材料[45,46,128] (a) STM实现GNI的可控旋转; (b) STM操纵实现悬浮在Au(111)面上的石墨烯薄层的旋转; (c) STM旋转双层石墨烯上的1T-NbSe2岛; (d) STM平移双层石墨烯上的1T-NbSe2

      Figure 12.  Translation and rotation of two-dimensional materials through STM manipulation[45,46,128]: (a) STM tip-manipulated GNI rotation; (b) STM tip-manipulated floating graphene flake rotation on Au(111); (c) rotation of 1T-NbSe2 island by STM; (d) translation of 1T-NbSe2 island by STM.

    • 当STM探针逐渐靠近金属表面上的链状分子、纳米带、单层材料时, 探针和低维材料间的相互作用力会使低维材料被吸附在探针上或被局域提拉, 此时逐步抬高探针, 便可实现对链状分子、纳米带、单层材料的提拉(图13(a)). Koch等[52]利用STM探针成功提起了吸附在Au(111)面上的石墨烯纳米带, 并证明纳米带的导电状态和其上不同的电子态存在联系. 在石墨烯纳米带被提拉的过程中, 只有不与Au(111)表面接触的纳米带部分才参与导电[53], 不同的提拉电压会影响提拉过程中的电流信号变化(图13(b)). Lafferentz等[53]也应用类似技术实现了对Au(111)面上的聚芴高分子的提拉(图13(c)图13(d)).

      图  13  利用STM探针提拉低维材料[35,52,53] (a) STM提拉链状分子示意图; (b) 电流-探针高度曲线图; (c) 在Au(111)面上完成聚合的聚芴高分子STM图; (d) 电流-探针高度曲线图; (e) 原子分辨单层石墨烯在不同尖端样品距离下的三维形貌图; (f) 解释石墨烯薄膜力学行为的模型; (g) 应力导致石墨烯晶格大小改变图

      Figure 13.  Lifting low-dimensional materials by a STM tip[35,52,53]: (a) Scheme of the chain molecule pulling by STM; (b) current as a function of tip height for different experiments; (c) overview STM image after polymerization on Au(111) surface; (d) tunneling current as a function of the tip height; (e) three-dimensional representations of an atomically resolved monolayer graphene at different tip-sample distance; (f) model explaining the mechanical behavior of the graphene; (g) lattice constant change in graphene induced by strain.

      单层石墨烯上应力诱导的赝磁场在近十年的石墨研究中备受关注, Mashoff等[35]类利用STM探针在石墨烯中引入应力, 随STM探针靠近石墨烯薄层, 局部的石墨烯发生无损的应力形变(图13(e)). 在石墨烯最大隆起高度为32 pm时, 较完美晶格发生了14% 的畸变(图13(g)). 该提拉过程是可逆的并且伴随迟滞现象, 迟滞量大约为50 pm. 此外Klimov等[37]还发现栅极会对石墨烯产生向下的力, 与探针产生作用力相反, 他们通过探针和栅极对石墨烯应力进行了2个方向上的调控, 并通过应力在石墨烯上产生了大小相当于10 T的赝磁场.

    • 具备优良的力学性能的低维材料能够像纸张一样被卷曲或者折叠[129-131]. Chen等[47]利用STM操纵技术实现了石墨烯折纸术. 在STM探针与石墨烯边界的相互作用下, 石墨烯纳米岛(GNI)在石墨衬底上被可控和可逆地折叠和展开: 1)在4.2 K下, 减小隧穿电导, 使探针足够靠近GNI, 形成稳定的相互作用力; 2)利用探针抬起GNI的边缘并沿着预先设计的方向移动; 3)最终降低探针, 被抬起部分从探针尖端脱落, 堆叠在未被抬起部分, 形成双层堆叠的石墨烯纳米结构(图14(a)). 折叠过程沿着任意方向都是可逆且形态无损的, 不会对GNI造成损伤或引入缺陷, 通过相反的操作可以得到原始的GNI(图14(b)). 利用石墨烯折纸术, 可以对折后双层堆叠的石墨烯转角进行调控, 从而构建出不同的莫尔图案(图14(c)). 除了形成双层石墨烯纳米结构外, 在折叠边界处形成半封闭、手性的一维类碳纳米管结构, 其手性结构与一维电子特性由折叠方向所决定(图14(d)图14(e)).

      图  14  STM对石墨烯纳米岛的可逆折叠[47] (a) GNI折叠示意和实验结果图; (b) 一系列展示沿各方向可逆折叠展开单个GNI的STM图; (c) 通过折叠GNI得到的不同转角莫尔图案示意图; (d), (e) 沿两个不同方向折叠GNI得到的管状手性结构

      Figure 14.  Reversable folding of graphene nanoisland by STM manipulation[47]: (a) Schematic and experiment results of GNI folding; (b) series of STM images showing repeatable folding and unfolding of a single GNI along different directions; (c) schematic of moiré pattern of different twisted angles; (d), (e) STM images showing structural configurations of two chiral tubular structures acquired by folding the same GNI along different directions.

    • 当STM探针与低维材料表面足够接近并在样品表面移动时, 二者间的强相互作用会使样品的原子键断裂, 破坏晶格结构. 原子键断裂结构的尺寸与形状主要由STM探针与样品间的作用力和探针移动的方向共同决定. 因此, 利用此种可控裁剪与刻蚀操纵模式, 可以对低维材料的孔洞、沟道等结构进行精准构筑[54-58,62-65].

      Tapaszto等[55]利用STM探针刻蚀方法实现了一维石墨烯纳米带的精准制备. 在高偏压恒流模式下, STM通过沿预先设定的路径扫描实现刻蚀, 其原因可能是隧穿电子导致的碳-碳键断裂[132]. 图15(a)为利用STM探针刻蚀技术制备的10 nm宽, 120 nm长的石墨烯纳米带, 图15(b)则是8 nm宽, 转角为30°的纳米带, 该纳米带展现出连接锯齿型(zigzag)和扶手椅(armchair)石墨烯的金属-半导体分子结特点[133]. Magda等[54]在刻蚀出的石墨烯纳米带(图15(c)图15(d))上观测到了很强的磁性序, 以及随着纳米带宽度增加产生的由半导体向金属的转变.

      图  15  应用STM探针刻蚀技术精准构筑特定形状的纳米结构[54,55,61] (a) STM刻蚀的10 nm宽, 120 nm长的纳米带的3D图; (b) STM刻蚀的8 nm宽, 弯折30°连接扶手椅型和zigzag型的石墨烯纳米带结; (c) STM刻蚀的5 nm宽扶手椅型边界的石墨烯纳米带; (d) STM刻蚀的6.5 nm宽zigzag型边界的石墨烯纳米带; (e) H:Si(100)面经STM氢刻蚀后的STM图; (f) 基于STM氢刻蚀制备的器件.

      Figure 15.  Specific nanostructures patterned by precise STM lithography[54,55,61]: (a) 3D STM image of a 10-nm-wide and 120-nm-long graphene nanoribbon; (b) an 8-nm-wide 30° GNR bent junction connecting an armchair and a zigzag ribbon; (c) STM image of a 5-nm-wide graphene nanoribbon with armchair edge orientation; (d) STM image of a 6.5-nm-wide ribbon with edges of precisely zigzag orientation; (e) STM image of H:Si(100) surface after STM hydrogen lithography; (f) a device fabricated based on STM hydrogen lithography.

      除了如上所述的一维石墨烯纳米带结构, STM探针原子级精准的刻蚀技术还被用于低维半导体器件的构建. 将STM技术、氢原子刻蚀及Si的分子束外延生长技术结合, Ruess等[60]制备出了原子级精确的器件结构. Si基底经预处理后会在表面形成氢原子为截断面的Si(2×1)重构, 随后利用STM进行区域可控脱氢刻蚀, 暴露出悬挂键(图15(e)), 随后再将器件置于350 ℃的PH3气体氛围中, 实现在目标区域可控掺P, 再原位蒸镀Si进行封装, 便可进行后续的器件制备. 基于此搭建的器件, 在国际上首次完成了原子尺度欧姆定律的证明[61](图15(f)).

    • 本文综述了扫描隧道显微镜原子操纵技术在低维材料物性调控领域的最新研究进展, 展示了4种探针操纵模式和它们在调控低维材料的物性方面的独特优势和潜在的应用前景. 主要体现在以下几个方面: 1)利用STM电压脉冲的热效应或静电力, 可以对样品实现局域加热而产生相变; 通过改变样品表面结构以诱导出新奇的物理现象; 脉冲产生的静电力则能改变材料表面原子、分子的化学环境, 从而实现对某些物性的精确调控. 2)利用STM不同探针样品距离带来的静电力和波函数交叠, 在样品表面诱导出不同激发态; 可控下压探针调控探针样品间的相互作用力, 从而实现对某些层状材料表面应力的调控. 3)利用STM的接触模式或较小的探针样品距离, 对样品进行扫描时, 使纳米带或分子被提拉; 实现对某些层状材料如石墨烯的可控折叠和旋转, 构建异质结或特定的纳米结构; 对材料表面的刻蚀, 可制备出纳米级精确均一的器件.

      虽然通过发展多种表面原子操纵模式已实现一些特定的低维材料体系中的某些新奇物性的原子级精准调控, 但应用该技术实现物性调控仍然面临一 些问题与挑战. 首先, 扫描探针既是物性调控的主要工具又是物性测量的核心部件. 在各种操纵模式中, 即使在很低的温度下, 针尖尖端的原子构型与电子态密度也可能发生改变, 从而影响测量的精度与稳定性. 因此, 需要探索同时保证高效操纵与精确、稳定测量的新型探针技术. 其次, 表面原子操纵技术基于单个扫描探针的局域模式, 精度高, 但集成性差, 无法与当前的微纳加工技术结合, 实现高密度、大规模集成应用依然存在很大挑战. 随着更多的新型低维材料的成功构筑、新奇物性的发现以及多种新技术的发展, STM原子操纵技术对低维材料的操纵模式需要进一步地发展与扩充, 实现更加精准、丰富与复杂的物性调控. 例如: 在新型低维材料方面, 在近几年最新合成的“笼目”结构超导体[29]、磁性半金属[88]等新型功能材料中, 有望应用STM探针引入的局域电场与磁场, 对表面的局域激发态等物性进行精准调控; 结合STM裁剪刻蚀技术, 对黑磷[134]、硅烯[135-139]、铪烯[140]、锑烯[141,142]、锗烯[143]、锡烯[144]、铋烯[145]等很难通过传统工艺构建功能器件的新型二维原子晶体材料进行低维器件的精准构筑. 在调控手段方面, 表面原子操纵技术需要进一步扩展, 寻求与其他调控手段的结合, 实现低维材料物性调控的多功能化、集成化与自动化, 并最终用于量子结构、量子器件和量子机器等未来信息结构单元的构筑中. 例如: 1)将STM原子操纵技术拓展到多探针STM [146,147]、原子力显微镜[148] 、快扫扫描探针显微镜等其他具备特殊功能的扫描探针系统, 实现多种功能化的原子操纵手段; 2)与低能电子束辐照、中子散射和场发射等其他结构与物性调控手段相结合[149,150], 实现对复杂纳米结构更加丰富的物性调控; 3)结合机器学习算法[151-153], 实现表面原子操纵与物性调控的批量化与智能化; 4)将表面原子操纵技术的原子级精度的优势与电子束光刻技术等传统微纳加工工艺相结合[154-157], 发展新型的扫描探针技术, 进一步提高微纳加工的精度, 实现亚纳米精度的器件结构的构筑.

参考文献 (157)

目录

    /

    返回文章
    返回