搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑模鲁棒算法的超低频主动隔振系统

罗东云 程冰 周寅 吴彬 王肖隆 林强

引用本文:
Citation:

基于滑模鲁棒算法的超低频主动隔振系统

罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强

Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm

Luo Dong-Yun, Cheng Bing, Zhou Yin, Wu Bin, Wang Xiao-Long, Lin Qiang
PDF
导出引用
  • 振动噪声的有效隔离是冷原子重力仪的关键技术之一.为了减小冷原子重力仪中拉曼反射镜的振动噪声,研制了一套紧凑型低频主动隔振系统.其原理是利用滑模鲁棒控制系统处理和反馈由地震仪采集到的振动信号,利用音圈电机控制和消除被动隔振平台的运动.在0.110 Hz频域范围内,滑模鲁棒控制系统的残余振动噪声功率谱密度比被动隔振平台最大降低了99.9%,比超前滞后补偿控制方法最大降低了83.3%.滑模鲁棒控制算法还具有整定参数少、抗干扰能力强等特点.
    An ultra-low frequency vibrational noise isolation apparatus from external vibration can be a critical factor in many fields such as precision measurement, high-technology manufacturing, scientific instruments, and gravitational wave detection. To increase the accuracies of these experiments, well performed vibration isolation technology is required. Until recently the cold atom gravimeter has played a crucial role in measuring the acceleration due to gravity and earth gravity gradient. The vibration isolation is one of the key techniques in the cold atom gravimeter. To reduce the vibrational noise caused by the reflecting mirror of Raman beams in the cold atom gravimeter, a compact active low-frequency vibration isolation system based on sliding-mode robust control is designed and demonstrated. The sliding-mode robust control active vibration isolation method is used to solve the vibration problem of Raman mirror in the cold atomic gravimeter. The purpose of vibration control is that the controller enables the system to be at zero state as the system states are away from the equilibrium due to vibration disturbance. In this system, the mechanical setup is based on a commercial passive isolation platform which only plays a role at higher frequency. A sliding-mode robust control subsystem is used to process and feed back the vibration measured by a seismometer which can measure the velocity of the ground vibration. A voice coil actuator is used to control and cancel the motion of a passive vibration isolation platform. The simulation and experiment results of vibration isolation platform show, on the one hand, that the vibration noise power spectral density decreases by up to 99.9%, and that the phase noise in cold atom interferometry produced by vibration decreases by up to nearly 85.3% compared with the results of the passive vibration isolation platform. On the other hand, compared with the lead-lag control method, the vibration noise power spectral density decreases by up to 83.3% and the phase noise in cold atom interferometry produced by vibration decreases by nearly 40.2%. Therefore, the sliding-mode robust control has the advantages of less tuning parameters, strong anti-interference ability, and more obvious vibration isolating effect.
      通信作者: 林强, qlin@zju.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFC0601602,2016YFF0200206)和国家自然科学基金(批准号:61727821,61475139,11604296)资助的课题.
      Corresponding author: Lin Qiang, qlin@zju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC0601602, 2016YFF0200206) and the National Natural Science Foundation of China (Grant Nos. 61727821, 61475139, 11604296).
    [1]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. B 67 181

    [2]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321

    [3]

    Borde C J 1989 Phys. Lett. A 140 10

    [4]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E, Kasapi S 1991 Phys. Rev. Lett. 66 2693

    [5]

    Clauser J F 1988 Physica B 151 262

    [6]

    Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297

    [7]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [8]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 43610

    [9]

    Hauth M, Freier C, Schkolnik M, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49

    [10]

    Jacquey M, Miffre A, Buchner M, Trenec G, Vigue J 2006 Appl. Phys. B 84 617

    [11]

    Zhou L, Xiong Z Y, Wang Y, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J 2011 Gen. Relat. Gravit 43 1931

    [12]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735

    [13]

    Frier C 2010 Ph. D. Dissertation (Hamburg: Universitt Hamburg)

    [14]

    Tang B, Zhou L, Wang Y H, Xiong Z Y, Xiong Z Y, Wang J, Zhan M S 2014 Rev. Sci. Instrum. 85 093109

    [15]

    Zhou M K, Xiong X, Chen L L, Cui J F, Duan X C, Hu Z K 2015 Rev. Sci. Instrum. 86 046108

    [16]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [17]

    Luan Q L, Chen Z W, Xu J R, He H N 2014 Journal of Vibration and Shock 33 54 (in Chinese)[栾强利, 陈章位, 徐尽荣, 贺惠农 2014 振动与冲击 33 54]

    [18]

    Chen X, Wang H, Tao W, Yang C L 2017 Chinese Journal of Sensors and Actuators 30 777 (in Chinese)[陈希, 王海, 陶伟, 杨春来 2017 传感技术学报 30 777]

    [19]

    Liu G D, Xu X K, Liu B G, Chen F D, Hu T, Lu C, Gan Y 2016 Acta Phys. Sin. 65 209501 (in Chinese)[刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨 2016 物理学报 65 209501]

    [20]

    Lu M M, Zhou J K, Lin J Q, Li Y C, Zhou X Q 2016 Machine Tool Hydraulics 23 46 (in Chinese)[卢明明, 周家康, 林洁琼, 李迎春, 周晓勤 2016 机床与液压 23 46]

    [21]

    Wei Y M, Liu X H, Fan Z C 2017 Aerospace Control and Application 43 1 (in Chinese)[魏延明, 刘旭辉, 樊子辰 2017 空间控制技术与应用 43 1]

    [22]

    Sun Y F 2017 Measurement and Control Technology 34 80 (in Chinese)[孙亚飞 2017 测控技术 34 80]

    [23]

    Hu J P, Zheng C, Li K J, Liu C P, Hu Q 2015 Noise and Vibration Control 35 193 (in Chinese)[胡均平, 郑聪, 李科军, 刘成沛, 胡骞 2015 噪声与振动控制 35 193]

    [24]

    Dai X Z, Liu X Y, Chen L 2016 Acta Phys. Sin. 65 130701 (in Chinese)[代显智, 刘小亚, 陈蕾 2016 物理学报 65 130701]

    [25]

    Li Z L 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[李子龙 2015 博士学位论文 (武汉:华中科技大学)]

    [26]

    Boulandet R, Michau M, Herzog P, Micheau P, Berry A 2016 J. Sound. Vib. 378 14

    [27]

    Liu L 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[刘磊 2011 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [28]

    Xia Z W, Wang X T, Hou J J, Wei S B, Fang Y Y 2016 J. Low Freq. Noise. Vib. Act. Control 35 17

    [29]

    Aloufi B, Behdinan K, Zu J 2016 Smart Mater. Struct. 25 125004

  • [1]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. B 67 181

    [2]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321

    [3]

    Borde C J 1989 Phys. Lett. A 140 10

    [4]

    Keith D W, Ekstrom C R, Turchette Q A, Pritchard D E, Kasapi S 1991 Phys. Rev. Lett. 66 2693

    [5]

    Clauser J F 1988 Physica B 151 262

    [6]

    Kasevich M, Weiss D S, Riis E, Moler K, Kasapi S, Chu S 1991 Phys. Rev. Lett. 66 2297

    [7]

    Carnal O, Mlynek J 1991 Phys. Rev. Lett. 66 2689

    [8]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 43610

    [9]

    Hauth M, Freier C, Schkolnik M, Schkolnik V, Senger A, Schmidt M, Peters A 2013 Appl. Phys. B 113 49

    [10]

    Jacquey M, Miffre A, Buchner M, Trenec G, Vigue J 2006 Appl. Phys. B 84 617

    [11]

    Zhou L, Xiong Z Y, Wang Y, Tang B, Peng W C, Hao K, Li R B, Liu M, Wang J 2011 Gen. Relat. Gravit 43 1931

    [12]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735

    [13]

    Frier C 2010 Ph. D. Dissertation (Hamburg: Universitt Hamburg)

    [14]

    Tang B, Zhou L, Wang Y H, Xiong Z Y, Xiong Z Y, Wang J, Zhan M S 2014 Rev. Sci. Instrum. 85 093109

    [15]

    Zhou M K, Xiong X, Chen L L, Cui J F, Duan X C, Hu Z K 2015 Rev. Sci. Instrum. 86 046108

    [16]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25

    [17]

    Luan Q L, Chen Z W, Xu J R, He H N 2014 Journal of Vibration and Shock 33 54 (in Chinese)[栾强利, 陈章位, 徐尽荣, 贺惠农 2014 振动与冲击 33 54]

    [18]

    Chen X, Wang H, Tao W, Yang C L 2017 Chinese Journal of Sensors and Actuators 30 777 (in Chinese)[陈希, 王海, 陶伟, 杨春来 2017 传感技术学报 30 777]

    [19]

    Liu G D, Xu X K, Liu B G, Chen F D, Hu T, Lu C, Gan Y 2016 Acta Phys. Sin. 65 209501 (in Chinese)[刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨 2016 物理学报 65 209501]

    [20]

    Lu M M, Zhou J K, Lin J Q, Li Y C, Zhou X Q 2016 Machine Tool Hydraulics 23 46 (in Chinese)[卢明明, 周家康, 林洁琼, 李迎春, 周晓勤 2016 机床与液压 23 46]

    [21]

    Wei Y M, Liu X H, Fan Z C 2017 Aerospace Control and Application 43 1 (in Chinese)[魏延明, 刘旭辉, 樊子辰 2017 空间控制技术与应用 43 1]

    [22]

    Sun Y F 2017 Measurement and Control Technology 34 80 (in Chinese)[孙亚飞 2017 测控技术 34 80]

    [23]

    Hu J P, Zheng C, Li K J, Liu C P, Hu Q 2015 Noise and Vibration Control 35 193 (in Chinese)[胡均平, 郑聪, 李科军, 刘成沛, 胡骞 2015 噪声与振动控制 35 193]

    [24]

    Dai X Z, Liu X Y, Chen L 2016 Acta Phys. Sin. 65 130701 (in Chinese)[代显智, 刘小亚, 陈蕾 2016 物理学报 65 130701]

    [25]

    Li Z L 2015 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)[李子龙 2015 博士学位论文 (武汉:华中科技大学)]

    [26]

    Boulandet R, Michau M, Herzog P, Micheau P, Berry A 2016 J. Sound. Vib. 378 14

    [27]

    Liu L 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[刘磊 2011 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [28]

    Xia Z W, Wang X T, Hou J J, Wei S B, Fang Y Y 2016 J. Low Freq. Noise. Vib. Act. Control 35 17

    [29]

    Aloufi B, Behdinan K, Zu J 2016 Smart Mater. Struct. 25 125004

  • [1] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究. 物理学报, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [2] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [3] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [4] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [6] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [7] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [8] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [9] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [10] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制. 物理学报, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [11] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制. 物理学报, 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [12] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [13] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究. 物理学报, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [14] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制. 物理学报, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [15] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步. 物理学报, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [16] 王兴元, 朱全龙, 张晓鹏. 基于三种方法的新Lü混沌系统的同步. 物理学报, 2011, 60(10): 100510. doi: 10.7498/aps.60.100510
    [17] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制. 物理学报, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [18] 刘福才, 宋佳秋. 基于主动滑模控制的一类混沌系统异结构反同步. 物理学报, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [19] 黄国勇, 姜长生, 王玉惠. 鲁棒terminal滑模控制实现一类不确定混沌系统同步. 物理学报, 2007, 56(11): 6224-6229. doi: 10.7498/aps.56.6224
    [20] 王兴元, 王明军. 三种方法实现超混沌Chen系统的反同步. 物理学报, 2007, 56(12): 6843-6850. doi: 10.7498/aps.56.6843
计量
  • 文章访问数:  7619
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-22
  • 修回日期:  2017-10-09
  • 刊出日期:  2019-01-20

/

返回文章
返回