搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两级摆杆结构的超低频垂直隔振系统

王观 胡华 伍康 李刚 王力军

引用本文:
Citation:

基于两级摆杆结构的超低频垂直隔振系统

王观, 胡华, 伍康, 李刚, 王力军

Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure

Wang Guan, Hu Hua, Wu Kang, Li Gang, Wang Li-Jun
PDF
导出引用
  • 在许多精密科学实验和测试中,对地面垂直振动的有效隔离影响着实验结果和测试结果的精度.本文提出一种全新的两级摆杆结构的超低频垂直隔振系统,在原理分析的基础上,设计并实现了该系统的样机.两根水平摆杆放置在同一竖直平面,绕各自铰链旋转,上摆杆通过普通弹簧悬挂于基座,下摆杆通过零长弹簧悬挂于上摆杆.系统通过光电探测方法检测两根摆杆的夹角作为误差信号,经过闭环控制将反馈力作用于上摆杆,使两根摆杆的夹角为零.零长弹簧悬挂点的位置与系统刚度有着密切关系,通过精细地调节弹簧悬挂点的位置,合理地设置控制参数,可以实现一个本征频率低至0.01 Hz的系统.理论上,该系统相对于被动式垂直隔振系统具有更好的隔振效果和抗干扰能力,相对于传统的主动式垂直隔振系统体积更小,结构更简单,有望应用于精密物理实验和科学研究当中.
    High-performance vertical vibration isolators are required in precision instruments and physical experiments to reduce the seismic noise, which limits the instrument performance and measurement results. For example, inertial references are needed in interferometric gravitational wave detectors and absolute gravimeters, in order to separate the useful signal from noise. Microseisms typically occur at around 0.07 Hz. The secondary microseisms occur at about 0.14 Hz. Buildings usually wobble at frequencies between 0.1 and 1 Hz. To reduce all these vibrations would require a spring-mass system with a resonance frequency lower than 0.05 Hz. The most commonly applied techniques use a passive vertical isolation system, which is easy to set up and cheap to build. However, to achieve low cut-off frequency, such as 0.05 Hz, there requires longer than 100 m static deflection for a simple passive isolator, which is impractical in most applications. An ultra-low-frequency active vertical vibration isolator, based on a two-stage beam structure, is proposed and demonstrated in this paper. Two beams are connected to a frame with flexural pivots. The upper beam is suspended from the frame with a normal hex spring. The lower beam is suspended from the upper one by a zero-length spring. The flexural pivots of the upper beam are not vertically placed above the pivots of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to change the effective stiffness. A laser reflectometry is used to detect the angle between the two beams. A laser collimator, a mirror, a beam splitter and an optical detector are fixed to the upper beam, and another mirror is fixed to the lower beam. A laser beam from the collimator is directed to the detector via the mirrors and the beam splitter. The output of the detector is proportional to the angle between the two beams. The minimum detectable angle is 36 nrad. The angle signal is sent to a circuit to generate a control signal, which drives a voice coil mounted between the lower beam and the frame to maintain the angle between the two beams to a fixed value. The isolation system can achieve a natural period of 100 s by carefully adjusting the attachment points of the zero-length spring and the feedback parameters. This type of isolator has a simpler and more robust structure than the famous active vibration isolator-the super spring. The system is promising in applications such as precision instruments and experiments, especially in absolute gravimeters.
      通信作者: 伍康, kangwu@mail.tsinghua.edu.cn
    • 基金项目: 清华大学自主科研计划(批准号:2013THZ05)资助的课题.
      Corresponding author: Wu Kang, kangwu@mail.tsinghua.edu.cn
    • Funds: Project supported by the Scientific Research Plan of Tsinghua University, China (Grant No. 2013THZ05).
    [1]

    Nelson P G 1991 Rev. Sci. Instrum. 62 2069

    [2]

    Newell D B, Richman S J, Nelson P G, Stebbins R T, Bender P L, Faller J E 1997 Rev. Sci. Instrum. 68 3211

    [3]

    Usher M J, Burch R F, Guralp C 1979 Phys. Earth Planet Inter. 18 38

    [4]

    Willmore P L 1979 Phys. Earth Planet Inter. 18 35

    [5]

    Saulson P R 1984 Rev. Sci. Instrum. 55 1315

    [6]

    Robertson N A, Drever R W P, Kerr I, Hough J 1982 J. Phys. E 15 1101

    [7]

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101 (in Chinese)[胡华, 伍康, 申磊, 李刚, 王力军2012物理学报61 099101]

    [8]

    Ren L C, Zhou L, Li R B, Liu M, Wang J, Zhan M S 2009 Acta Phys. Sin. 58 8230 (in Chinese)[任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生2009物理学报58 8230]

    [9]

    Zheng S L, Chen J, Lin Q 2005 Acta Phys. Sin. 54 3535 (in Chinese)[郑森林, 陈君, 林强2005物理学报54 3535]

    [10]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908

    [11]

    Haubrich R A, McCamy K 1969 Rev. Geophys. 7 539

    [12]

    Agnew D C 1986 Rev. Geophys. 24 579

    [13]

    Cessaro R K 1994 Bull. Seismol. Soc. Am. 84 142

    [14]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735

    [15]

    Winterflood J, Blair D, Slagmolen B 2002 Phys. Lett. A 300 122

    [16]

    Zhao P F, Huang Y Y, Tang M X 2002 Chin. Phys. Lett. 19 172

    [17]

    Rinker R, Faller J 1981 Proceedings of Precision Measurement and Fundamental Constants Gaithersburg, the USA, June 8-12, 1981 p411

    [18]

    Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502

    [19]

    Li G, Hu H, Wu K, Wang G, Wang L J 2015 J. Vib. Shock 34 33 (in Chinese)[李刚, 胡华, 伍康, 王观, 王力军2015振动与冲击34 33]

  • [1]

    Nelson P G 1991 Rev. Sci. Instrum. 62 2069

    [2]

    Newell D B, Richman S J, Nelson P G, Stebbins R T, Bender P L, Faller J E 1997 Rev. Sci. Instrum. 68 3211

    [3]

    Usher M J, Burch R F, Guralp C 1979 Phys. Earth Planet Inter. 18 38

    [4]

    Willmore P L 1979 Phys. Earth Planet Inter. 18 35

    [5]

    Saulson P R 1984 Rev. Sci. Instrum. 55 1315

    [6]

    Robertson N A, Drever R W P, Kerr I, Hough J 1982 J. Phys. E 15 1101

    [7]

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101 (in Chinese)[胡华, 伍康, 申磊, 李刚, 王力军2012物理学报61 099101]

    [8]

    Ren L C, Zhou L, Li R B, Liu M, Wang J, Zhan M S 2009 Acta Phys. Sin. 58 8230 (in Chinese)[任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生2009物理学报58 8230]

    [9]

    Zheng S L, Chen J, Lin Q 2005 Acta Phys. Sin. 54 3535 (in Chinese)[郑森林, 陈君, 林强2005物理学报54 3535]

    [10]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908

    [11]

    Haubrich R A, McCamy K 1969 Rev. Geophys. 7 539

    [12]

    Agnew D C 1986 Rev. Geophys. 24 579

    [13]

    Cessaro R K 1994 Bull. Seismol. Soc. Am. 84 142

    [14]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735

    [15]

    Winterflood J, Blair D, Slagmolen B 2002 Phys. Lett. A 300 122

    [16]

    Zhao P F, Huang Y Y, Tang M X 2002 Chin. Phys. Lett. 19 172

    [17]

    Rinker R, Faller J 1981 Proceedings of Precision Measurement and Fundamental Constants Gaithersburg, the USA, June 8-12, 1981 p411

    [18]

    Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502

    [19]

    Li G, Hu H, Wu K, Wang G, Wang L J 2015 J. Vib. Shock 34 33 (in Chinese)[李刚, 胡华, 伍康, 王观, 王力军2015振动与冲击34 33]

  • [1] 施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹. HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究. 物理学报, 2023, 72(21): 215208. doi: 10.7498/aps.72.20230696
    [2] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [3] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [4] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [5] 罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强. 基于滑模鲁棒算法的超低频主动隔振系统. 物理学报, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [6] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [7] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制. 物理学报, 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [8] 牛英煜, 王荣, 修俊玲. 两束重合脉冲控制下的振转态布居转移. 物理学报, 2012, 61(9): 093302. doi: 10.7498/aps.61.093302
    [9] 王刚, 胡芃, 陈则韶, 程晓舫. 两级透射-反射聚光分频电热联产系统设计和分析. 物理学报, 2012, 61(18): 184216. doi: 10.7498/aps.61.184216
    [10] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [11] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究. 物理学报, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [12] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制. 物理学报, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [13] 李震波, 赵小山, 王靖. 基于改进的主动控制法实现混沌系统广义投影同步. 物理学报, 2011, 60(5): 050508. doi: 10.7498/aps.60.050508
    [14] 王兴元, 朱全龙, 张晓鹏. 基于三种方法的新Lü混沌系统的同步. 物理学报, 2011, 60(10): 100510. doi: 10.7498/aps.60.100510
    [15] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制. 物理学报, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [16] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究. 物理学报, 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [17] 刘福才, 宋佳秋. 基于主动滑模控制的一类混沌系统异结构反同步. 物理学报, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [18] 王兴元, 王明军. 三种方法实现超混沌Chen系统的反同步. 物理学报, 2007, 56(12): 6843-6850. doi: 10.7498/aps.56.6843
    [19] 王久敏, 陈坤基, 宋 捷, 余林蔚, 吴良才, 李 伟, 黄信凡. 氮化硅介质中双层纳米硅薄膜的两级电荷存储. 物理学报, 2006, 55(11): 6080-6084. doi: 10.7498/aps.55.6080
    [20] 朱浩荣, 居广林, 唐秀云, 沈学础. 两级非磁性超高压装置. 物理学报, 1984, 33(4): 472-476. doi: 10.7498/aps.33.472
计量
  • 文章访问数:  5898
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-24
  • 修回日期:  2016-06-13
  • 刊出日期:  2016-10-05

/

返回文章
返回