-
在许多精密科学实验和测试中,对地面垂直振动的有效隔离影响着实验结果和测试结果的精度.本文提出一种全新的两级摆杆结构的超低频垂直隔振系统,在原理分析的基础上,设计并实现了该系统的样机.两根水平摆杆放置在同一竖直平面,绕各自铰链旋转,上摆杆通过普通弹簧悬挂于基座,下摆杆通过零长弹簧悬挂于上摆杆.系统通过光电探测方法检测两根摆杆的夹角作为误差信号,经过闭环控制将反馈力作用于上摆杆,使两根摆杆的夹角为零.零长弹簧悬挂点的位置与系统刚度有着密切关系,通过精细地调节弹簧悬挂点的位置,合理地设置控制参数,可以实现一个本征频率低至0.01 Hz的系统.理论上,该系统相对于被动式垂直隔振系统具有更好的隔振效果和抗干扰能力,相对于传统的主动式垂直隔振系统体积更小,结构更简单,有望应用于精密物理实验和科学研究当中.High-performance vertical vibration isolators are required in precision instruments and physical experiments to reduce the seismic noise, which limits the instrument performance and measurement results. For example, inertial references are needed in interferometric gravitational wave detectors and absolute gravimeters, in order to separate the useful signal from noise. Microseisms typically occur at around 0.07 Hz. The secondary microseisms occur at about 0.14 Hz. Buildings usually wobble at frequencies between 0.1 and 1 Hz. To reduce all these vibrations would require a spring-mass system with a resonance frequency lower than 0.05 Hz. The most commonly applied techniques use a passive vertical isolation system, which is easy to set up and cheap to build. However, to achieve low cut-off frequency, such as 0.05 Hz, there requires longer than 100 m static deflection for a simple passive isolator, which is impractical in most applications. An ultra-low-frequency active vertical vibration isolator, based on a two-stage beam structure, is proposed and demonstrated in this paper. Two beams are connected to a frame with flexural pivots. The upper beam is suspended from the frame with a normal hex spring. The lower beam is suspended from the upper one by a zero-length spring. The flexural pivots of the upper beam are not vertically placed above the pivots of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to change the effective stiffness. A laser reflectometry is used to detect the angle between the two beams. A laser collimator, a mirror, a beam splitter and an optical detector are fixed to the upper beam, and another mirror is fixed to the lower beam. A laser beam from the collimator is directed to the detector via the mirrors and the beam splitter. The output of the detector is proportional to the angle between the two beams. The minimum detectable angle is 36 nrad. The angle signal is sent to a circuit to generate a control signal, which drives a voice coil mounted between the lower beam and the frame to maintain the angle between the two beams to a fixed value. The isolation system can achieve a natural period of 100 s by carefully adjusting the attachment points of the zero-length spring and the feedback parameters. This type of isolator has a simpler and more robust structure than the famous active vibration isolator-the super spring. The system is promising in applications such as precision instruments and experiments, especially in absolute gravimeters.
-
Keywords:
- vertical vibration isolator /
- ultra-low frequency oscillator /
- two-stage beams /
- active control
[1] Nelson P G 1991 Rev. Sci. Instrum. 62 2069
[2] Newell D B, Richman S J, Nelson P G, Stebbins R T, Bender P L, Faller J E 1997 Rev. Sci. Instrum. 68 3211
[3] Usher M J, Burch R F, Guralp C 1979 Phys. Earth Planet Inter. 18 38
[4] Willmore P L 1979 Phys. Earth Planet Inter. 18 35
[5] Saulson P R 1984 Rev. Sci. Instrum. 55 1315
[6] Robertson N A, Drever R W P, Kerr I, Hough J 1982 J. Phys. E 15 1101
[7] Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101 (in Chinese)[胡华, 伍康, 申磊, 李刚, 王力军2012物理学报61 099101]
[8] Ren L C, Zhou L, Li R B, Liu M, Wang J, Zhan M S 2009 Acta Phys. Sin. 58 8230 (in Chinese)[任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生2009物理学报58 8230]
[9] Zheng S L, Chen J, Lin Q 2005 Acta Phys. Sin. 54 3535 (in Chinese)[郑森林, 陈君, 林强2005物理学报54 3535]
[10] Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908
[11] Haubrich R A, McCamy K 1969 Rev. Geophys. 7 539
[12] Agnew D C 1986 Rev. Geophys. 24 579
[13] Cessaro R K 1994 Bull. Seismol. Soc. Am. 84 142
[14] Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735
[15] Winterflood J, Blair D, Slagmolen B 2002 Phys. Lett. A 300 122
[16] Zhao P F, Huang Y Y, Tang M X 2002 Chin. Phys. Lett. 19 172
[17] Rinker R, Faller J 1981 Proceedings of Precision Measurement and Fundamental Constants Gaithersburg, the USA, June 8-12, 1981 p411
[18] Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502
[19] Li G, Hu H, Wu K, Wang G, Wang L J 2015 J. Vib. Shock 34 33 (in Chinese)[李刚, 胡华, 伍康, 王观, 王力军2015振动与冲击34 33]
-
[1] Nelson P G 1991 Rev. Sci. Instrum. 62 2069
[2] Newell D B, Richman S J, Nelson P G, Stebbins R T, Bender P L, Faller J E 1997 Rev. Sci. Instrum. 68 3211
[3] Usher M J, Burch R F, Guralp C 1979 Phys. Earth Planet Inter. 18 38
[4] Willmore P L 1979 Phys. Earth Planet Inter. 18 35
[5] Saulson P R 1984 Rev. Sci. Instrum. 55 1315
[6] Robertson N A, Drever R W P, Kerr I, Hough J 1982 J. Phys. E 15 1101
[7] Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101 (in Chinese)[胡华, 伍康, 申磊, 李刚, 王力军2012物理学报61 099101]
[8] Ren L C, Zhou L, Li R B, Liu M, Wang J, Zhan M S 2009 Acta Phys. Sin. 58 8230 (in Chinese)[任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生2009物理学报58 8230]
[9] Zheng S L, Chen J, Lin Q 2005 Acta Phys. Sin. 54 3535 (in Chinese)[郑森林, 陈君, 林强2005物理学报54 3535]
[10] Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908
[11] Haubrich R A, McCamy K 1969 Rev. Geophys. 7 539
[12] Agnew D C 1986 Rev. Geophys. 24 579
[13] Cessaro R K 1994 Bull. Seismol. Soc. Am. 84 142
[14] Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735
[15] Winterflood J, Blair D, Slagmolen B 2002 Phys. Lett. A 300 122
[16] Zhao P F, Huang Y Y, Tang M X 2002 Chin. Phys. Lett. 19 172
[17] Rinker R, Faller J 1981 Proceedings of Precision Measurement and Fundamental Constants Gaithersburg, the USA, June 8-12, 1981 p411
[18] Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502
[19] Li G, Hu H, Wu K, Wang G, Wang L J 2015 J. Vib. Shock 34 33 (in Chinese)[李刚, 胡华, 伍康, 王观, 王力军2015振动与冲击34 33]
计量
- 文章访问数: 5898
- PDF下载量: 258
- 被引次数: 0