搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷原子重力仪的绝对重力动态移动测量实验

程冰 陈佩军 周寅 王凯楠 朱栋 楚立 翁堪兴 王河林 彭树萍 王肖隆 吴彬 林强

引用本文:
Citation:

基于冷原子重力仪的绝对重力动态移动测量实验

程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强

Experiment on dynamic absolute gravity measurement based on cold atom gravimeter

Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang
PDF
HTML
导出引用
  • 动态重力测量可以提高重力场的勘测效率, 对基础地质调查、资源勘探、地球物理研究等具有十分重要意义. 本文基于冷原子重力仪、惯性稳定平台和牵引动力装置搭建了一套绝对重力动态移动测量系统, 并开展了绝对重力动态测量实验. 首先测量了不同牵引速度下的垂向振动噪声功率谱, 理论分析了其对动态重力测量的影响; 其次评估了不同牵引速度对原子干涉条纹对比度和直流偏置量的影响, 分析了动态环境下的振动补偿效果; 在最大牵引速度为5.50 cm/s、最大振动幅度为0.1 m/s2的情况下, 实验上仍能基于振动补偿技术恢复原子干涉条纹. 在此基础上, 通过开展不同T下的原子干涉条纹测量, 评估了动态测量环境下的绝对重力值, 在校正完系统误差并减去绝对重力初始值后得到的测量结果为(–1.22 ± 2.42) mGal (1 Gal = 0.01 m/s2). 最后, 通过与静态环境下的绝对重力测量值进行比较, 发现两者基本吻合. 本文开展的绝对重力动态移动测量实验有望为车载动态绝对重力测量提供数据参考.
    Dynamic gravity measurements can improve the survey efficiency of the gravity field, and can play an important role in implementing the basic geological surveys, resource exploration, and geophysical research. Based on cold atom gravimeter, inertial stabilization platform and the movable vehicle device, a system for dynamically measuring absolute gravity is built, and the dynamic measurement experiments are carried out. Firstly, the noise power spectra of the vertical vibration are measured at different moving velocities, and the influence of such a vibration on the measurement of absolute gravity is analyzed theoretically. Besides, the influence on the contrasts and offsets of the atomic interference fringes are evaluated from different moving velocities, then the effect of vibration compensation in the dynamic measurement environment is analyzed. When the maximum moving speed is 5.50 cm/s and the maximum vibration amplitude is 0.1 m/s2, the atomic interference fringes can still be rebuilt based on the technology of vibration compensation. On this basis, the atomic interference fringes are obtained at different values of T and different moving velocities, then the absolute gravity value in the dynamic measurement environment is evaluated. After the correction of the systematic system and subtraction by the initial value of absolute gravity, the final measured result is (–1.22 ± 2.42) mGal. Finally, the experiment on the static absolute gravity is conducted, and the two values are found to be not much different from each other through comparing the static measurement data with the dynamic measurement data. The experiment of dynamic absolute gravity measurement in this paper may provide the helpful reference data for the dynamic absolute gravity measurement with moving vehicles.
      通信作者: 吴彬, wubin@zjut.edu.cn ; 林强, qlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0601602)、国家自然科学基金(批准号: 51905482, 61727821, 61875175, 11704334)和中国自然资源航空物探遥感中心项目(批准号: DD20189831)资助的课题
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334), and the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program, China (Grant No. DD20189831).
    [1]

    Bouchendira R, Clade P, Guellati Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [5]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep 8 12300Google Scholar

    [6]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett 102 144107Google Scholar

    [7]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl 10 034030Google Scholar

    [8]

    Zhang L, Gao W, Li Q, Li R, Yao Z, Lu S 2019 Sensors 19 222Google Scholar

    [9]

    Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Borde C J, Landragin A 2006 Phys. Rev. Lett 97 010402Google Scholar

    [10]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [11]

    Yao Z W, Lu S B, Li R B, Wang K, Cao L, Wang J, Zhan M S 2016 Chin. Phys. Lett 33 083701Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. :Conf. Ser 723 012050Google Scholar

    [14]

    Le Gouet J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [15]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [16]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [17]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin 67 190302Google Scholar

    [18]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt 57 6545Google Scholar

    [19]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [20]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin 68 194205Google Scholar

    [21]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett 17 011204Google Scholar

    [22]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv 5 eaax0800Google Scholar

    [24]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin 69 060302Google Scholar

    [25]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun 7 1

    [26]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun 2 474Google Scholar

    [27]

    Mahadeswaraswamy C 2009 Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry (California: Stanford University Press).

    [28]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun 9 9Google Scholar

    [29]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 2Google Scholar

    [30]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [31]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [32]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin 70 040304Google Scholar

  • 图 1  动态绝对重力测量的原理示意图

    Fig. 1.  The schematic diagram of dynamic measurement of the absolute gravity.

    图 2  动态迭代条纹拟合算法的原理示意图

    Fig. 2.  The schematic diagram of iterative fitting algorithm of the dynamic fringes.

    图 3  绝对重力动态测量系统示意图和实物图 (a) 实验装置示意图; (b) 实验装置实物图; (c) 20 h中的温湿度统计曲线

    Fig. 3.  The diagram and photo of the system for dynamic measurement of the absolute gravity: (a) The diagram of the experimental system; (b) the photo of the experimental apparatus; (c) the curve of temperature and humidity in 20 h.

    图 4  垂向振动噪声对动态重力测量的影响 (a) 静止与运动状态下垂向振动加速度的噪声功率谱; (b) 垂向振动噪声引起的重力测量不确定度

    Fig. 4.  The influence of vertical vibration noise on the dynamic measurement of the absolute gravity: (a) The power density spectra of vertical vibration noise in the case of static and dynamic environment; (b) the measurement uncertainty resulted from the noise of vertical vibration.

    图 5  不同牵引速度下的原子干涉条纹恢复及其正弦拟合结果(T = 4 ms)

    Fig. 5.  The results of the recovering and fitting of the atomic interference fringes with the different moving speeds (T = 4 ms).

    图 6  动态测量环境下下原子干涉条纹对比度与直流偏置量变化 (a) 原子干涉条纹对比度随牵引速度的变化曲线; (b) 原子干涉条纹直流偏置量随牵引速度的变化曲线

    Fig. 6.  The changes of the contrast and offset of atomic interference fringes in the case of dynamic measurement environment: (a) The changing curve of the contrast of atomic interference fringes with the moving velocity; (b)the changing curve of the offset of atomic interference fringes with the moving velocity.

    图 7  不同牵引速度、不同T下测量到的绝对重力值均值及其不确定度分析 (a) 绝对重力值的均值数据; (b) 绝对重力值的不确定度数据

    Fig. 7.  Analysis of the mean values and uncertainties of the absolute gravity measurement at the different velocities and different T: (a) The data of mean value of the absolute gravity measurement; (b) the uncertainties of the absolute gravity measurement.

    图 8  修正完科里奥利效应后的动态绝对重力测量结果(T = 20 ms)

    Fig. 8.  The final experimental results of the dynamic absolute gravity measurement after the correction of the Coriolis effect (T = 20 ms).

    图 9  静态环境下的高精度绝对重力值评估 (a) 静态下不同T的绝对重力测量结果; (b) T = 55 ms长时间静态绝对重力测量结果

    Fig. 9.  The accurate evaluation of the absolute gravity in the case of static gravity measurement: (a) Absolute gravity measurements of different T at static state; (b) static absolute gravimetric measurements of T = 55 ms for a long time.

    表 1  由科里奥利力效应引起的重力值修正

    Table 1.  The systematic corrections caused by the Coriolis effect.

    Moving
    velocity/(cm·s–1)
    0.551.352.253.75
    $ \Delta g $/mGal0.00060.00240.02500.0400
    下载: 导出CSV

    表 2  车间静止测量分组重力值

    Table 2.  The measured gravity value in the quiet place of a workshop.

    时间/h重力均值/mGal
    1.0–2.26
    1.5–2.27
    2.0–2.31
    2.5–2.22
    3.0–2.35
    3.5–2.33
    下载: 导出CSV

    表 3  车间静止下的B类不确定度表

    Table 3.  The uncertainties of type B in case of static measurement in the workshop.

    项目修正量/μGal不确定度/μGal
    科里奥利力–3.00.2
    双光子光移效应–43.24.0
    重力梯度–9.00.1
    激光波长–5.51.1
    参考频率0.02.0
    射频相移0.02.0
    自引力效应–2.70.1
    其他修正量0.04.0
    合成结果–63.413.5
    下载: 导出CSV
  • [1]

    Bouchendira R, Clade P, Guellati Khelifa S, Nez F, Biraben F 2011 Phys. Rev. Lett 106 080801Google Scholar

    [2]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [3]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G 2014 Nature 510 518Google Scholar

    [4]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [5]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep 8 12300Google Scholar

    [6]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett 102 144107Google Scholar

    [7]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl 10 034030Google Scholar

    [8]

    Zhang L, Gao W, Li Q, Li R, Yao Z, Lu S 2019 Sensors 19 222Google Scholar

    [9]

    Canuel B, Leduc F, Holleville D, Gauguet A, Fils J, Virdis A, Clairon A, Dimarcq N, Borde C J, Landragin A 2006 Phys. Rev. Lett 97 010402Google Scholar

    [10]

    Kasevich M, Chu S 1992 Appl. Phys. B 54 321Google Scholar

    [11]

    Yao Z W, Lu S B, Li R B, Wang K, Cao L, Wang J, Zhan M S 2016 Chin. Phys. Lett 33 083701Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. :Conf. Ser 723 012050Google Scholar

    [14]

    Le Gouet J, Mehlstaubler T E, Kim J, Merlet S, Clairon A, Landragin A, Dos Santos F P 2008 Appl. Phys. B 92 133Google Scholar

    [15]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [16]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [17]

    吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强 2018 物理学报 67 190302Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Zhou Y, Weng K X, Wang X L, Lin Q 2018 Acta Phys. Sin 67 190302Google Scholar

    [18]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt 57 6545Google Scholar

    [19]

    Wu X J, Zi F, Dudley J, Bilotta R J, Canoza P, Muller H 2017 Optica 4 1545Google Scholar

    [20]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin 68 194205Google Scholar

    [21]

    Fu Z J, Wang Q Y, Wang Z Y, Wu B, Cheng B, Lin Q 2019 Chin. Opt. Lett 17 011204Google Scholar

    [22]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv 5 eaax0800Google Scholar

    [24]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin 69 060302Google Scholar

    [25]

    Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A, Bouyer P 2016 Nat. Commun 7 1

    [26]

    Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M, Bidel Y, Bresson A, Landragin A, Bouyer P 2011 Nat. Commun 2 474Google Scholar

    [27]

    Mahadeswaraswamy C 2009 Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry (California: Stanford University Press).

    [28]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun 9 9Google Scholar

    [29]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geodesy 94 2Google Scholar

    [30]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [31]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [32]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin 70 040304Google Scholar

  • [1] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [2] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2022, 71(4): 049101. doi: 10.7498/aps.71.20211686
    [3] 车浩, 李安, 方杰, 葛贵国, 高伟, 张亚, 刘超, 许江宁, 常路宾, 黄春福, 龚文斌, 李冬毅, 陈曦, 覃方君. 基于冷原子重力仪的船载动态绝对重力测量实验研究. 物理学报, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [4] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [5] 要佳敏, 庄伟, 冯金扬, 王启宇, 赵阳, 王少凯, 吴书清, 李天初. 固定相位振动噪声对绝对重力测量的影响. 物理学报, 2021, 70(21): 219101. doi: 10.7498/aps.70.20210884
    [6] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211686
    [8] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [10] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [11] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [12] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [13] 罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强. 基于滑模鲁棒算法的超低频主动隔振系统. 物理学报, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [14] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [15] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [16] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [17] 胡华, 伍康, 申磊, 李刚, 王力军. 新型高精度绝对重力仪. 物理学报, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [18] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [19] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [20] 郑森林, 陈 君, 林 强. 光脉冲序列对三能级原子重力仪测量精度的影响. 物理学报, 2005, 54(8): 3535-3541. doi: 10.7498/aps.54.3535
计量
  • 文章访问数:  6007
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07
  • 修回日期:  2021-09-17
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回