搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高精度空间站共视时间比对新方法

刘音华 李孝辉

引用本文:
Citation:

超高精度空间站共视时间比对新方法

刘音华, 李孝辉

Super-high accurate new method of common-view time comparison based on space station

Liu Yin-Hua, Li Xiao-Hui
PDF
导出引用
  • 随着科学技术的进步和发展,许多基础前沿领域要求时间比对的精度为几十皮秒甚至更高.空间站上的原子钟系统比地面钟性能更优,但传统的共视时间比对方法应用于空间站共视存在一定的局限性.本文基于广义相对论分析了精度为几十皮秒的空间站共视时间比对原理,考虑了所有的皮秒级以上的时延项;结合空间站共视时间比对原理,仿真分析了空间站对于中国几大主要地理城市的可见性,分析结果表明部分地区存在共视时间比对的工作盲区.结合理论和仿真研究了空间站轨道误差对传统共视时间比对方法的影响,研究结果表明传统共视时间比对方法不能有效地抵消轨道误差,其对共视时间比对的影响在几百皮秒量级.提出了空间站分时共视时间比对新方法,介绍了该方法的主要原理和优势.通过仿真实验验证了新方法的有效性,能够实现几十皮秒精度的两地面站远距离共视时间比对,同时解决了传统共视方法的工作盲区问题.
    With the development of science and technology, the super high accurate time comparison techniques with several ten picoseconds or higher accuracy are required in many advanced and basic fields. The atomic clock system in the space station has better performance than that on the ground, but the traditional common-view time comparison method cannot be applied to the space station because there are some limitations. At first, the space station common-view time comparison principle aiming at several ten picoseconds accuracy is analyzed, and the sources of delay larger than 1 picosecond are considered. According to the space station common-view time comparison principle, the visibility of the space station is simulated based on several main geographical cities in China. The analysis results show that the time interval is short for ground station to observe the space station, and the common-view time interval is shorter. A more serious problem is shown that some areas cannot receive the signal send by the space station simultaneously, so the traditional common-view time comparison method is invalid when the ground stations are in these areas. Then the effect of space station orbit error is studied in theory and simulation based on the traditional method. The research result shows that the orbit error cannot be cancelled effectively by the traditional method, and the remnant orbit error is on the order of about several hundred picoseconds. These remnant orbit errors have a direct influence on the time comparison. A new asynchronous common-view time comparison method is proposed, and its principle and advantages are introduced. The geometric expression that describes the position relationship between the space station and two ground stations is proposed to find the observation time when the orbit errors can cancel completely. And the high stability of the space atomic clock and the ground atomic clock are advantaged to model and extrapolate the space-ground clock bias. The geometric position relationship and the modeling and extrapolating of the space-ground clock bias are combined together to solve the problems of time comparison accuracy and common-view blind area, because the optimized method does not require that two ground stations observe the space station simultaneously. Finally, the simulation experiments are done to validate the new method. The experimental result shows that the asynchronous common-view time comparison method is valid to realize the time comparison with the accuracy of several ten picoseconds. And it also shows that the new method is helpful in solving the problem of blind area that exists in traditional space station common-view time comparison method.
      通信作者: 刘音华, liuyh@ntsc.ac.cn
    • 基金项目: 中国科学院"西部之光"人才培养基金(批准号:XAB2016A05)和陕西省自然科学基金重点项目(批准号:2018ZDXM-GY-011)资助的课题.
      Corresponding author: Liu Yin-Hua, liuyh@ntsc.ac.cn
    • Funds: Project supported by the "West Light" Foundation of the Chinese Academy of Sciences (Grant No. XAB2016A05) and the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018ZD XM-GY-011).
    [1]

    Kong X X, Shen W B, Zhang S J 2016 Geom. Inf. Sci. Wuhan Univ. 41 969 (in Chinese) [孔祥雪, 申文斌, 张胜军 2016 武汉大学学报·信息科学版 41 969]

    [2]

    Bai Y 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [白钰 2015 博士学位论文 (北京:清华大学)]

    [3]

    Hou X B 2015 National Conference on Information Technology and Computer Science (CITCS 2015) Shanghai, China, March 21, 2015 p377

    [4]

    Matsakis D, Defraigne P, Banerjee P 2014 Radio Sci. Bull. 351 29

    [5]

    Miao Q 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [苗菁2015 博士学位论文 (北京:清华大学)]

    [6]

    Yuan Y B, Wang B, Wang L J 2017 Chin. Phys. B 26 080601

    [7]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601

    [8]

    Meynadier F, Delva P, Poncin-Latte C, Guerlin C, Wolf P 2018 https://arxiv.org/pdf/1709.06491.pdf[2018-4-27]

    [9]

    Yang W K, Meng W D, Han W B, Xie Y H, Ren X Q, Hu X G, Dong W L 2016 Prog. Astron. 34 221 (in Chinese) [杨文可, 孟文东, 韩文标, 谢永辉, 任晓乾, 胡小工, 董文丽 2016 天文学进展 34 221]

    [10]

    Zhou J P 2013 Manned Spaceflight 19 1 (in Chinese) [周建平 2013 载人航天 19 1]

    [11]

    Hobiger T, Piester D, Baron P 2013 Radio Sci. 48 131

    [12]

    Duchayne L, Wolf P, Luigi C, Hess M, Siccardi M 2008 https://arxiv.org/pdf/0901.2403v1.pdf[2018-4-27]

    [13]

    Föckersperger L, Bedrich S, Schäfer W 2004 Frequency Guildford UK, April 5-7, 2004 p385

    [14]

    Much R, Daganzo E, Feltham S, Nasca R Cacciapuoti L, Hess M P, Stringhetti L, Salomon C 2009 IEEE International Frequency Control Symposium Besancon, France, April 20-24, 2009 p199

    [15]

    Daganzo E, Feltham S, Much R, Nasca R, Stalford R, Hess M P, Stringhetti L 2009 IEEE International Frequency Control Symposium Besancon, France April 20-24, 2009 p1146

    [16]

    Delva P, Meynadier F, Poncin-Lafitte C, Laurent P, Wolf P 2013 European Frequency Prague, Czech Republic, July 21-25, 2013 p28

    [17]

    Chen X, Xu K, Yang H L 2014 Inf. Comm. 11 1 (in Chinese) [陈霄, 徐慨, 杨海亮 2014 信息通信 11 1]

    [18]

    Zhang K, Bai Y 2017 Electr. Design Eng. 25 153 [张柯, 白燕 2017 电子设计工程 25 153]

    [19]

    Kaplan E, Hegarty C J (translated by Kou Y H) 2012 Understanding GPS:Principle and Applications (Beijing:Electronic Industry Press) pp48-51 (in Chinese) [Kaplan E, Hegarty C J 著 (寇艳红 译) 2012 GPS原理与应用(北京:电子工业出版社)第48–51页]

    [20]

    Liu L 2004 Ph. D. Dissertation (Zhengzhou:Information Engineering University) (in Chinese) [刘利 2014 博士学位论文 (郑州:解放军信息工程大学)]

    [21]

    Petit G, Wolf P 1994 Astron. AstroPhys. 286 971

    [22]

    Shao J Z, Wang Y J 2012 Acta Phys. Sin. 61 110402 (in Chinese) [邵建舟, 王永久 2012 物理学报 61 110402]

    [23]

    Martin W, Live M, Achin H, Achim H 2012 NAVITEC 2012 and European Workshop on GNSS Signal and Signal Processing Noordwijk, Netherlands, December 5-7, 2012

    [24]

    Cerri L, Berthias J P, Bertiger W I, Haines B J, Gomez R, Lemoine F G, Ries J C, Willis P, Zelensky N P, Ziebart M 2010 Marine Geod. 33 379

    [25]

    Lemoine F G, Zelensky N P, Chinn D, Pavlis D E, Rawlands D D, Beckley B D, Luthcke S B, Willis P, Ziebart M, Sibthorpe A, Boy J P, Luceri V 2010 Adv. Space Res. 46 1513

  • [1]

    Kong X X, Shen W B, Zhang S J 2016 Geom. Inf. Sci. Wuhan Univ. 41 969 (in Chinese) [孔祥雪, 申文斌, 张胜军 2016 武汉大学学报·信息科学版 41 969]

    [2]

    Bai Y 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [白钰 2015 博士学位论文 (北京:清华大学)]

    [3]

    Hou X B 2015 National Conference on Information Technology and Computer Science (CITCS 2015) Shanghai, China, March 21, 2015 p377

    [4]

    Matsakis D, Defraigne P, Banerjee P 2014 Radio Sci. Bull. 351 29

    [5]

    Miao Q 2015 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [苗菁2015 博士学位论文 (北京:清华大学)]

    [6]

    Yuan Y B, Wang B, Wang L J 2017 Chin. Phys. B 26 080601

    [7]

    Yuan Y B, Wang B, Gao C, Wang L J 2017 Chin. Phys. B 26 040601

    [8]

    Meynadier F, Delva P, Poncin-Latte C, Guerlin C, Wolf P 2018 https://arxiv.org/pdf/1709.06491.pdf[2018-4-27]

    [9]

    Yang W K, Meng W D, Han W B, Xie Y H, Ren X Q, Hu X G, Dong W L 2016 Prog. Astron. 34 221 (in Chinese) [杨文可, 孟文东, 韩文标, 谢永辉, 任晓乾, 胡小工, 董文丽 2016 天文学进展 34 221]

    [10]

    Zhou J P 2013 Manned Spaceflight 19 1 (in Chinese) [周建平 2013 载人航天 19 1]

    [11]

    Hobiger T, Piester D, Baron P 2013 Radio Sci. 48 131

    [12]

    Duchayne L, Wolf P, Luigi C, Hess M, Siccardi M 2008 https://arxiv.org/pdf/0901.2403v1.pdf[2018-4-27]

    [13]

    Föckersperger L, Bedrich S, Schäfer W 2004 Frequency Guildford UK, April 5-7, 2004 p385

    [14]

    Much R, Daganzo E, Feltham S, Nasca R Cacciapuoti L, Hess M P, Stringhetti L, Salomon C 2009 IEEE International Frequency Control Symposium Besancon, France, April 20-24, 2009 p199

    [15]

    Daganzo E, Feltham S, Much R, Nasca R, Stalford R, Hess M P, Stringhetti L 2009 IEEE International Frequency Control Symposium Besancon, France April 20-24, 2009 p1146

    [16]

    Delva P, Meynadier F, Poncin-Lafitte C, Laurent P, Wolf P 2013 European Frequency Prague, Czech Republic, July 21-25, 2013 p28

    [17]

    Chen X, Xu K, Yang H L 2014 Inf. Comm. 11 1 (in Chinese) [陈霄, 徐慨, 杨海亮 2014 信息通信 11 1]

    [18]

    Zhang K, Bai Y 2017 Electr. Design Eng. 25 153 [张柯, 白燕 2017 电子设计工程 25 153]

    [19]

    Kaplan E, Hegarty C J (translated by Kou Y H) 2012 Understanding GPS:Principle and Applications (Beijing:Electronic Industry Press) pp48-51 (in Chinese) [Kaplan E, Hegarty C J 著 (寇艳红 译) 2012 GPS原理与应用(北京:电子工业出版社)第48–51页]

    [20]

    Liu L 2004 Ph. D. Dissertation (Zhengzhou:Information Engineering University) (in Chinese) [刘利 2014 博士学位论文 (郑州:解放军信息工程大学)]

    [21]

    Petit G, Wolf P 1994 Astron. AstroPhys. 286 971

    [22]

    Shao J Z, Wang Y J 2012 Acta Phys. Sin. 61 110402 (in Chinese) [邵建舟, 王永久 2012 物理学报 61 110402]

    [23]

    Martin W, Live M, Achin H, Achim H 2012 NAVITEC 2012 and European Workshop on GNSS Signal and Signal Processing Noordwijk, Netherlands, December 5-7, 2012

    [24]

    Cerri L, Berthias J P, Bertiger W I, Haines B J, Gomez R, Lemoine F G, Ries J C, Willis P, Zelensky N P, Ziebart M 2010 Marine Geod. 33 379

    [25]

    Lemoine F G, Zelensky N P, Chinn D, Pavlis D E, Rawlands D D, Beckley B D, Luthcke S B, Willis P, Ziebart M, Sibthorpe A, Boy J P, Luceri V 2010 Adv. Space Res. 46 1513

  • [1] 刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新. 中国空间站冷原子光钟激光系统. 物理学报, 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [2] 刘超, 张爱兵, 孙越强, 孔令高, 王文静, 关燚炳, 王永松, 郑香脂, 田峥, 高俊. 空间站问天舱等离子体原位成像探测技术. 物理学报, 2023, 72(4): 049401. doi: 10.7498/aps.72.20221759
    [3] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电效应的物理过程及特征. 物理学报, 2013, 62(22): 229401. doi: 10.7498/aps.62.229401
    [4] 黄建国, 易忠, 孟立飞, 赵华, 刘业楠. 空间站快速充电事件的机理研究. 物理学报, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [5] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 自由质点测地线仿射参量时空坐标系. 物理学报, 2012, 61(17): 170401. doi: 10.7498/aps.61.170401
    [6] 邵建舟, 王永久. 整体单极子黑洞引力场中的加速效应. 物理学报, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [7] 卞保民, 赖小明, 杨玲, 李振华, 贺安之. 空间变尺度因子球坐标系与四维时空度规. 物理学报, 2012, 61(8): 080401. doi: 10.7498/aps.61.080401
    [8] 向茂槐, 陈菊华, 王永久. 含整体单极子黑洞场中的吸附和辐射. 物理学报, 2011, 60(9): 090401. doi: 10.7498/aps.60.090401
    [9] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [10] 王永久, 李爱根, 龚添喜, 陈菊华. 一类无奇点宇宙模型. 物理学报, 2010, 59(2): 712-715. doi: 10.7498/aps.59.712
    [11] 陈 光. 离散时空中的非塌缩的尘埃球解. 物理学报, 2005, 54(7): 2971-2976. doi: 10.7498/aps.54.2971
    [12] 王永久, 唐智明. 一类宇宙模型的稳定性. 物理学报, 2001, 50(10): 1829-1832. doi: 10.7498/aps.50.1829
    [13] 钟鸣乾. 行星重力的后牛顿近似对卫星作用的估计. 物理学报, 2001, 50(12): 2497-2500. doi: 10.7498/aps.50.2497
    [14] 唐智明, 王永久. 广义相对论中加速电荷的辐射. 物理学报, 1999, 48(4): 561-565. doi: 10.7498/aps.48.561
    [15] 陶必修, 陶必友. 广义相对论“星系长城”. 物理学报, 1996, 45(7): 1091-1099. doi: 10.7498/aps.45.1091
    [16] 段一士, 冯世祥. 广义相对论中广义协变的角动量守恒定律. 物理学报, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [17] 刘文森. 广义相对论中能量的定域性. 物理学报, 1983, 32(4): 515-519. doi: 10.7498/aps.32.515
    [18] 褚耀泉, 程福臻, 方励之. 广义相对论中负指数多层球的结构及稳定性. 物理学报, 1980, 29(1): 64-72. doi: 10.7498/aps.29.64
    [19] 朱世昌. 广义相对论中自转球体的引力质量亏损和转动质量效应. 物理学报, 1979, 28(6): 894-900. doi: 10.7498/aps.28.894
    [20] 郭汉英, 吴詠时, 李根道. 广义相对论的旋量和复矢量形式. 物理学报, 1974, 23(5): 5-16. doi: 10.7498/aps.23.5
计量
  • 文章访问数:  6452
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 修回日期:  2018-06-25
  • 刊出日期:  2018-10-05

/

返回文章
返回