搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进短时傅里叶变换的磁共振随机噪声消减方法

林婷婷 李玥 高兴 万玲

引用本文:
Citation:

基于改进短时傅里叶变换的磁共振随机噪声消减方法

林婷婷, 李玥, 高兴, 万玲

Random noise suppression of magnetic resonance sounding signal based on modified short-time Fourier transform

Lin Ting-Ting, Li Yue, Gao Xing, Wan Ling
PDF
HTML
导出引用
  • 磁共振测深法(magnetic resonance sounding, MRS)具有无需钻探即可直接探测地下水含量的优势, 但是极低的信噪比(signal-to-noise ratio, SNR)限制了该方法的大范围应用, 目前的研究工作主要集中在消除MRS信号中的尖峰噪声和工频谐波噪声上, 而随机噪声由于其无规律性导致难以消除, 但是它的影响不容忽视. 目前MRS随机噪声的消减常采用叠加法, 需要重复采集数据叠加平均来达到消噪目的, 探测时间长且消噪效果有限. 针对这一问题, 本文提出了一种改进的短时傅里叶变换方法, 该方法通过处理单次采集的MRS包络信号来降低数据量, 提高数据处理效率. 改进的短时傅里叶变换方法采用解析信号代替常规短时傅里叶变换中的实值信号, 提高MRS信号时频域瞬时幅度的准确度, 得到MRS信号的高精度时频分布, 然后提取时频域峰值幅度和峰值相位重构信号来消除随机噪声. 仿真实验和实测数据处理结果表明, 该方法能够直接处理单次采集数据, 在信噪比高于–17.21 dB的情况下可有效提取MRS信号, 实现随机噪声的压制, 且与传统叠加法相比, 信噪比最多可提高27.88 dB, 均方根误差最多缩小36.44倍, 参数估计值更加准确. 本文的研究结果为利用MRS获取准确的地下水分布情况奠定了良好的基础.
    Magnetic resonance sounding (MRS) has the advantage of detecting groundwater content directly without drilling, but the signal-to-noise ratio (SNR) is extremely low which limits the application of the method. Most of the current researches focus on eliminating spikes and powerline harmonic noise in the MRS signal, whereas the influence of random noise cannot be ignored even though it is difficult to suppress due to the irregularity. The common method to eliminate MRS random noise is stacking which requires extensive measurement repetition at the cost of detection efficiency, and it is insufficient when employed in a high-level noise surrounding. To solve this problem, we propose a modified short-time Fourier transform(MSTFT) method, in which used is the short-time Fourier transform on the analytical signal instead of the real-valued signal to obtain the high-precision time-frequency distribution of MRS signal, followed by extracting the time-frequency domain peak amplitude and peak phase to reconstruct the signal and suppress the random noise. The performance of the proposed method is tested on synthetic envelope signals and field data. The using of the MSTFT method to handle a single recording can suppress the random noise and extract MRS signals when SNR is more than –17.21 dB. Compared with the stacking method, the MSTFT achieves an 27.88dB increase of SNR and more accurate parameter estimation. The findings of this study lay a good foundation for obtaining exact groundwater distribution by utilizing magnetic resonance sounding.
      通信作者: 万玲, wanling@jlu.edu.cn
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号: 41722405)、国家自然科学基金(批准号: 41874209, 41974208)、吉林省科技厅重点科技研发项目(批准号: 20180201017GX)、吉林省科技发展计划(批准号: 20180520183JH)和吉林大学博士研究生交叉学科科研资助计划(批准号: 101832020DJX066)资助的课题
      Corresponding author: Wan Ling, wanling@jlu.edu.cn
    • Funds: Project supported by the Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41722405), the National Natural Science Foundation of China (Grant Nos. 41874209, 41974208), the Key Research Projects of Jilin Provincial Science and Technology Department, China (Grant No. 20180201017GX), the Science and Technology Development Projects of Jilin Province, China (Grant No. 20180520183JH), and the Interdisciplinary Program for Doctoral Students of Jilin University, China (Grant No. 101832020DJX066)
    [1]

    林君, 段清明, 王应吉 2011 核磁共振找水仪原理与应用 (北京: 科学出版社) 第2−10页

    Lin J, Duan Q M, Wang Y J 2011 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Beijing: Science Press) pp2−10 (in Chinese)

    [2]

    Legchenko A, Valla P 2002 J. Appl. Geophys. 50 3Google Scholar

    [3]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27Google Scholar

    [4]

    Legchenko A, Valla P 1998 J. Appl. Geophys. 39 77Google Scholar

    [5]

    Legchenko A, Baltassat J M, Beauce A, Berbard J 2002 J. Appl. Geophys. 50 21Google Scholar

    [6]

    Hertrich M 2008 Prog. Nucl. Magn. Reson. Spectrosc. 53 227Google Scholar

    [7]

    Walsh D, Turner P, Grunewald E, Zhang H, Butler J J, Reboulet E, Knobbe S, Christy T, Lane J W, Johnson C D, Munday T, Fitzpatrick A 2013 Ground Water 51 914Google Scholar

    [8]

    Dlugosch R, Günther T, Lukàcs T, Müller-Petke M 2016 Geophysics 81 WB109Google Scholar

    [9]

    Grunewald E, Grombacher D, Walsh D 2016 Geophysics 81 WB85Google Scholar

    [10]

    林君, 张扬, 张思远, 舒旭, 杜文元, 林婷婷 2016 吉林大学学报(地球科学版) 46 1221Google Scholar

    Lin J, Zhang Y, Zhang S Y, Shu X, Du W Y, Lin T T 2016 J. Jilin Univ. (Earth Science Edition) 46 1221Google Scholar

    [11]

    Lin J, Zhang Y, Yang Y J, Sun Y, Lin T T 2017 Rev. Sci. Instrum. 88 064702Google Scholar

    [12]

    Davis A C, Dlugosch R, Queitsch M, Macnae J C, Stolz R, Müller-Petke 2014 Geophys. Res. Lett. 41 4222Google Scholar

    [13]

    Davis A C, Müller-Petke M, Dlugosch R, Quietsch M, Macnae J, Stolz R 2015 ASEG Extended Abstracts 2015 1Google Scholar

    [14]

    Lin T T, Yang Y J, Teng F, Müller-Petke M 2018 Geophys. J. Int. 212 1463Google Scholar

    [15]

    Müller-Petke M, Braun M, Hertrich M, Costabel S, Walbrecker J 2016 Geophysics 81 WB9Google Scholar

    [16]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459Google Scholar

    [17]

    Dalgaard E, Auken E, Larsen J J 2012 Geophys. J. Int. 191 88Google Scholar

    [18]

    Larsen J J 2016 Geophysics 81 WB1Google Scholar

    [19]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103Google Scholar

    [20]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [21]

    Müller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199Google Scholar

    [22]

    Larsen J J, Dalgaard E, Auken E 2014 Geophys. J. Int. 196 828Google Scholar

    [23]

    Dalgaard E, Müller-Petke M, Auken E 2016 Near Surf. Geophys. 14 243Google Scholar

    [24]

    林婷婷, 张扬, 杨莹, 杨玉晶, 滕飞, 万玲 2018 地球物理学报 561 3812Google Scholar

    Lin T T, Zhang Y, Yang Y, Yang Y J, Teng F, Wan L 2018 Chinese J. Geophys. 561 3812Google Scholar

    [25]

    Bernard J. 2006 Proceedings of the 3rd Magnetic Resonance Sounding International Workshop Madrid, Spain, October 25−27, 2006 p459

    [26]

    段一斌 2014 硕士学位论文 (成都: 电子科技大学)

    Duan Y B 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [27]

    Marfurt K J, Kirlin R L 2001 Geophysics 66 1274Google Scholar

    [28]

    Behroozmand A A, Dalgaard E, Christiansen A V, Auken E 2013 Near Surf. Geophys. 11 557Google Scholar

  • 图 1  叠加法分别叠加1, 4, 8和16次时消除随机噪声效果时域和频域图

    Fig. 1.  Time-domain and frequency-domain diagrams after stacking 1, 4, 8 and 16 times to suppress random noise, respectively.

    图 2  MSTFT与常规短时傅里叶变换之间的区别 (a) 时频幅度谱${A_{\rm{s}}}\left( {\tau, f} \right)$; (b) 时频相位谱${\theta _{\rm{s}}}\left( {\tau, f} \right)$; (c) 高精度时频幅度谱$A\left( {\tau, f} \right)$; (d) 高精度时频相位谱$\theta \left( {\tau, f} \right)$; (e) ${A_{\rm{s}}}\left( {\tau, f} \right)$$A\left( {\tau, f} \right)$的差异; (f) ${\theta _{\rm{s}}}\left( {\tau, f} \right)$$\theta \left( {\tau, f} \right)$的差异

    Fig. 2.  Difference between the MSTFT and the conventional short-time Fourier transform: (a) time–frequency amplitude spectrum${A_{\rm{s}}}\left( {\tau, f} \right)$; (b) time–frequency phase spectrum${\theta _{\rm{s}}}\left( {\tau, f} \right)$; (c) high-precision time–frequency amplitude spectrum$A\left( {\tau, f} \right)$; (d) high-precision time–frequency phase spectrum$\theta \left( {\tau, f} \right)$; (e) difference between${A_{\rm{s}}}\left( {\tau, f} \right)$ and$A\left( {\tau, f} \right)$; (f) difference between${\theta _{\rm{s}}}\left( {\tau, f} \right)$ and$\theta \left( {\tau, f} \right)$.

    图 3  MSTFT方法消除随机噪声过程示例 (a) 仿真含噪数据; (b)瞬时幅度; (c) 瞬时相位; (d) 峰值幅度; (e) 峰值相位; (f)重构信号

    Fig. 3.  Example of the basic procedure for the random noise suppression using MSTFT: (a) Synthetic noisy signal; (b) instantaneous amplitude; (c) instantaneous phase; (d) peak amplitude; (e) peak phase; (f) reconstructed signal.

    图 4  3组仿真随机噪声消噪结果图 (a)低噪声强度下仿真数据高精度时频域振幅; (b) 低噪声强度下消噪结果时域图; (c) 低噪声强度下消噪结果频域图; (d) 中噪声强度下仿真数据高精度时频域振幅; (e) 中噪声强度下消噪结果时域图; (f) 中噪声强度下消噪结果频域图; (g) 高噪声强度下仿真数据高精度时频域振幅; (h) 高噪声强度下消噪结果时域图; (i) 高噪声强度下消噪结果频域图

    Fig. 4.  The de-noising results of 3 sets of random noise simulation: (a) High-precision time-frequency domain amplitude of simulated data under low noise intensity; (b) time domain results under low noise intensity; (c) frequency domain results under low noise intensity; (d) high-precision time-frequency domain amplitude of simulated data under moderate noise intensity; (e) time domain results under moderate noise intensity; (f) frequency domain results under moderate noise intensity; (g) high-precision time-frequency domain amplitude of simulated data under high noise intensity; (h) time domain results under high noise intensity; (i) frequency domain results under high noise intensity.

    图 5  叠加法和MSTFT方法消除随机噪声效果对比图 (a) 叠加法消除随机噪声时域图; (b) MSTFT方法消除随机噪声时域图; (c) 叠加法和MSTFT方法消除随机噪声频域对比图

    Fig. 5.  Comparison of the de-noising results by using stacking and MSTFT methods: (a) Results of random noise elimination by stacking in time domain; (b) results of random noise elimination by MSTFT in time domain; (c) comparison of the de-noising results by using stacking and MSTFT methods in frequency domain.

    图 6  实测数据处理结果图 (a) 野外探测原始数据; (b) 叠加法消除随机噪声后数据; (c) MSTFT方法消除随机噪声后数据

    Fig. 6.  De-noising results of field data: (a) Original field data; (b) random noise elimination by stacking; (c) random noise elimination by MSTFT.

    图 7  叠加法和MSTFT方法处理4个脉冲矩信号结果对比图 (a) 时域对比结果; (b) 频域对比结果

    Fig. 7.  Comparison of the de-noising results of 4 pulse moments by using stacking and MSTFT methods: (a) Time domain comparison; (b) frequency domain comparison.

    图 8  叠加法和MSTFT处理实测数据提取参数结果对比 (a) 初始振幅; (b) 弛豫时间; (c) 频率偏移

    Fig. 8.  Parameter estimation after random noise elimination of field data by using stacking and MSTFT methods: (a) Initial amplitude; (b) relaxation time; (c) frequency offset.

    图 9  叠加法和MSTFT处理实测数据提取MRS信号反演结果与钻孔结果对比 (a) 叠加法; (b) MSTFT方法

    Fig. 9.  Comparison of the inversion of the field data processd by stacking and MSTFT methods respectively with the borehole log: (a) Stacking result; (b) MSTFT result.

    表 1  3组仿真随机噪声消噪后参数估计情况表

    Table 1.  The parameter estimation after de-noising of 3 sets of simulated random noise.

    E0/nV$T_2^* $ /ms$\Delta f$ / HzSNR/dBRMSE/nV
    信号1
    (SNR = 0.68 dB)
    200.19 ± 3.01149.2 ± 2.8–0.03 ± 0.0132.671.03 ± 0.55
    信号2
    (SNR = –5.20 dB)
    202.61 ± 4.90152.0 ± 6.70.04 ± 0.0324.013.79 ± 1.89
    信号3
    (SNR = –11.22 dB)
    204.12 ± 5.96154.4 ± 12.80.04 ± 0.0620.815.81 ± 2.42
    下载: 导出CSV

    表 2  叠加法和MSTFT消除随机噪声提取参数结果对比

    Table 2.  Comparison of the parameter estimation after random noise elimination by stacking and MSTFT methods.

    E0/nV$T_2^* $ /ms$\Delta f$/HzSNR/dBRMSE/nV
    测点1: q116次叠加167.49270.1–0.53–16.81484.95
    MSTFT197.42 ± 4.41102.6 ± 5.3–0.31 ± 0.0911.0713.31 ± 8.09
    测点1: q216次叠加163.78285.5–0.65–16.85487.52
    MSTFT195.77 ± 5.02103.9 ± 5.9–0.34 ± 0.109.8319.10 ± 10.83
    测点2: q132次叠加217.43336.9–0.74–17.05498.41
    MSTFT205.20 ± 6.25105.7 ± 8.7–0.36 ± 0.118.0824.31 ± 12.36
    测点2: q232次叠加221.51359.4–0.92–17.21507.79
    MSTFT206.21 ± 7.47107.4 ± 10.9–0.37 ± 0.116.9127.70 ± 18.64
    下载: 导出CSV
  • [1]

    林君, 段清明, 王应吉 2011 核磁共振找水仪原理与应用 (北京: 科学出版社) 第2−10页

    Lin J, Duan Q M, Wang Y J 2011 Theory and Design of Magnetic Resonance Sounding Instrument for Groundwater Detection and Its Applications (Beijing: Science Press) pp2−10 (in Chinese)

    [2]

    Legchenko A, Valla P 2002 J. Appl. Geophys. 50 3Google Scholar

    [3]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27Google Scholar

    [4]

    Legchenko A, Valla P 1998 J. Appl. Geophys. 39 77Google Scholar

    [5]

    Legchenko A, Baltassat J M, Beauce A, Berbard J 2002 J. Appl. Geophys. 50 21Google Scholar

    [6]

    Hertrich M 2008 Prog. Nucl. Magn. Reson. Spectrosc. 53 227Google Scholar

    [7]

    Walsh D, Turner P, Grunewald E, Zhang H, Butler J J, Reboulet E, Knobbe S, Christy T, Lane J W, Johnson C D, Munday T, Fitzpatrick A 2013 Ground Water 51 914Google Scholar

    [8]

    Dlugosch R, Günther T, Lukàcs T, Müller-Petke M 2016 Geophysics 81 WB109Google Scholar

    [9]

    Grunewald E, Grombacher D, Walsh D 2016 Geophysics 81 WB85Google Scholar

    [10]

    林君, 张扬, 张思远, 舒旭, 杜文元, 林婷婷 2016 吉林大学学报(地球科学版) 46 1221Google Scholar

    Lin J, Zhang Y, Zhang S Y, Shu X, Du W Y, Lin T T 2016 J. Jilin Univ. (Earth Science Edition) 46 1221Google Scholar

    [11]

    Lin J, Zhang Y, Yang Y J, Sun Y, Lin T T 2017 Rev. Sci. Instrum. 88 064702Google Scholar

    [12]

    Davis A C, Dlugosch R, Queitsch M, Macnae J C, Stolz R, Müller-Petke 2014 Geophys. Res. Lett. 41 4222Google Scholar

    [13]

    Davis A C, Müller-Petke M, Dlugosch R, Quietsch M, Macnae J, Stolz R 2015 ASEG Extended Abstracts 2015 1Google Scholar

    [14]

    Lin T T, Yang Y J, Teng F, Müller-Petke M 2018 Geophys. J. Int. 212 1463Google Scholar

    [15]

    Müller-Petke M, Braun M, Hertrich M, Costabel S, Walbrecker J 2016 Geophysics 81 WB9Google Scholar

    [16]

    Jiang C D, Lin J, Duan Q M, Sun S Q, Tian B F 2011 Near Surf. Geophys. 9 459Google Scholar

    [17]

    Dalgaard E, Auken E, Larsen J J 2012 Geophys. J. Int. 191 88Google Scholar

    [18]

    Larsen J J 2016 Geophysics 81 WB1Google Scholar

    [19]

    Legchenko A, Valla P 2003 J. Appl. Geophys. 53 103Google Scholar

    [20]

    Walsh D O 2008 J. Appl. Geophys. 66 140Google Scholar

    [21]

    Müller-Petke M, Costabel S 2014 Near Surf. Geophys. 12 199Google Scholar

    [22]

    Larsen J J, Dalgaard E, Auken E 2014 Geophys. J. Int. 196 828Google Scholar

    [23]

    Dalgaard E, Müller-Petke M, Auken E 2016 Near Surf. Geophys. 14 243Google Scholar

    [24]

    林婷婷, 张扬, 杨莹, 杨玉晶, 滕飞, 万玲 2018 地球物理学报 561 3812Google Scholar

    Lin T T, Zhang Y, Yang Y, Yang Y J, Teng F, Wan L 2018 Chinese J. Geophys. 561 3812Google Scholar

    [25]

    Bernard J. 2006 Proceedings of the 3rd Magnetic Resonance Sounding International Workshop Madrid, Spain, October 25−27, 2006 p459

    [26]

    段一斌 2014 硕士学位论文 (成都: 电子科技大学)

    Duan Y B 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [27]

    Marfurt K J, Kirlin R L 2001 Geophysics 66 1274Google Scholar

    [28]

    Behroozmand A A, Dalgaard E, Christiansen A V, Auken E 2013 Near Surf. Geophys. 11 557Google Scholar

  • [1] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [2] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [3] 吕袭明, 李辉, 尤菁, 李伟, 王鹏业, 李明, 奚绪光, 窦硕星. 单分子荧光共振能量转移数据处理的优化算法. 物理学报, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [4] 魏宇童, 刘尚阔, 颜廷昱, 李祺伟. 偏振型干涉成像光谱仪谱线位置定标方法的研究. 物理学报, 2016, 65(8): 080601. doi: 10.7498/aps.65.080601
    [5] 焦洋, 徐亮, 高闽光, 金岭, 童晶晶, 李胜, 魏秀丽. 污染气体扫描成像红外被动遥测系统实时数据处理研究. 物理学报, 2013, 62(14): 140705. doi: 10.7498/aps.62.140705
    [6] 刘扬阳, 吕群波, 曾晓茹, 黄旻, 相里斌. 静态计算光谱成像仪图谱反演的关键数据处理技术. 物理学报, 2013, 62(6): 060203. doi: 10.7498/aps.62.060203
    [7] 张丽, 杨晓丽, 孙中奎. 噪声环境下时滞耦合网络的广义投影滞后同步. 物理学报, 2013, 62(24): 240502. doi: 10.7498/aps.62.240502
    [8] 闫振纲, 林颖璐, 杨娟, 李振华, 卞保民. 光电探测器随机噪声特征量统计分布函数. 物理学报, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [9] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [10] 简小华, 张淳民, 祝宝辉, 任文艺. 时空混合调制型偏振干涉成像光谱仪数据处理研究. 物理学报, 2010, 59(9): 6131-6137. doi: 10.7498/aps.59.6131
    [11] 戎海武, 王向东, 徐伟, 方同. 窄带随机噪声作用下单自由度非线性干摩擦系统的响应. 物理学报, 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [12] 戎海武, 王向东, 徐 伟, 方 同. 谐和与随机噪声联合作用Duffing单边约束系统的响应. 物理学报, 2008, 57(11): 6888-6895. doi: 10.7498/aps.57.6888
    [13] 盖 琦, 王明伟, 李智磊, 翟宏琛. 基于离散四元数傅里叶变换的双随机相位加密技术. 物理学报, 2008, 57(11): 6955-6961. doi: 10.7498/aps.57.6955
    [14] 喻远琴, 林 珂, 于 锋, 周晓国, 刘世林, 马兴孝. 用CARS技术确定拉曼退偏比的一种数据处理新方法. 物理学报, 2007, 56(5): 2699-2703. doi: 10.7498/aps.56.2699
    [15] 孙可煦, 江少恩, 易荣清, 崔延莉, 丁永坤, 刘慎业. X射线二极管时间特性研究. 物理学报, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [16] 戎海武, 王向东, 徐 伟, 方 同. 有界随机噪声激励下软弹簧Duffing振子的安全盆分叉. 物理学报, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
    [17] 戎海武, 王向东, 徐 伟, 孟 光, 方 同. 窄带随机噪声作用下Duffing振子的双峰稳态概率密度. 物理学报, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [18] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [19] 池凌飞, 林揆训, 姚若河, 林璇英, 余楚迎, 余云鹏. Langmuir单探针诊断射频辉光放电等离子体及其数据处理. 物理学报, 2001, 50(7): 1313-1317. doi: 10.7498/aps.50.1313
    [20] 姚若河, 池凌飞, 林璇英, 石旺舟, 林揆训. 射频辉光放电等离子体的电探针诊断及数据处理. 物理学报, 2000, 49(5): 922-925. doi: 10.7498/aps.49.922
计量
  • 文章访问数:  4582
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-04-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回