搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞秒激光模间拍频法的大尺寸测距方法

张晓声 易旺民 胡明皓 杨再华 吴冠豪

引用本文:
Citation:

基于飞秒激光模间拍频法的大尺寸测距方法

张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪
cstr: 32037.14.aps.65.080602

Large-scale absolute distance measurement using inter-mode beat of a femtosecond laser

Zhang Xiao-Sheng, Yi Wang-Min, Hu Ming-Hao, Yang Zai-Hua, Wu Guan-Hao
cstr: 32037.14.aps.65.080602
PDF
导出引用
在线预览
  • 本文基于飞秒激光模间拍频法实现多波长相位式绝对距离测量, 通过改变光频梳重复频率合成波长扩大测距量程, 并采用监测臂和双快门切换系统补偿和消除由电路产生的相位差单向漂移和大幅抖动. 实验中以20倍重复频率的拍频进行测量, 在30 min内相位测量的标准偏差为0.022; 与双频激光干涉仪比对1125 mm行程内位移测量结果, 测距精度优于50 m; 实验验证了合成波长方法扩大量程方案的可行性, 获得的测距重复性优于3 m, 该系统理论上可扩展量程至7.5 km.
    Large-scale absolute distance measurement system with high accuracy plays a significant role in science and engineering applications. In many fields such as aerospace technology, large-scale manufacture, geodetic survey and civil engineering, absolute distance measurement systems with a range of up to kilometers and accuracy of better than several micrometers are generally required. Traditional laser ranging methods such as the time-of-flight method and the interferometry method are difficult to achieve both large scale and high accuracy. With the development of femtosecond optical frequency comb technology, several ranging methods with larger range and higher accuracy are developed. In the frequency domain, the optical frequency comb has a large number of stable mode lines, or the longitudinal modes, at regular intervals, which generates the inter-mode beat signal. In this study, based on the inter-mode beat of a femtosecond laser, an absolute distance measurement system using multi-wavelength interferometric method is demonstrated. It has a simple experimental setup with high accuracy but in a limited range of 2.5 m due to the 2-period of phase detection. To achieve a large-scale measurement system, the measurement range of the experimental system is extended by using the synthetic wavelength generated by tuning the repetition frequency of the laser. With a repetition frequency change of 0.2 MHz, a synthetic wavelength of up to 1.5 km is realized, thus the measurement range of the experimental setup can be extended to 0.75 km. Besides the reference and measurement path beams, a monitor path beam and two alternately opened mechanical shutters are used to measure and compensate for the phase drift due to the unbalanced drift of the electronic circuit. By using this method, the standard deviation of the phase measurement results in 30 min is 0.022 in the experiment, and the phase drift can be compensated for very well. The measurement results from the experimental system are compared with the results from a commercial heterodyne interferometer, and the comparison between results shows a precision of better than 50 m in a displacement of 1125 mm. In the experiment, the repeatability of absolute distance measurement using the range extending method is better than 3 m, thus the range of the distance measurement system can be theoretically extended up to 7.5 km. In conclusion, we demonstrate that a large-scale absolute distance measurement system using inter-mode beat of a femtosecond laser, has a range of up to 7.5 km, an accuracy of better than 50 m and a repeatability of better than 3 m. The accuracy of the experimental system can be further improved by using photodetectors with higher bandwidth so that a higher inter-mode beat and a shorter wavelength can be used.
      通信作者: 吴冠豪, guanhaowu@mail.tsinghua.edu.cn
    • 基金项目: 大学生创新创业训练计划资助项目(批准号: 201510003B022)、航天器高精度测量实验室基金、国家自然科学基金(批准号: 61575105)、瞬态光学与光子技术国家重点实验室开放基金(批准号: SKLST201406)和北京市高等学校青年英才计划(批准号: YETP0085)资助的课题.
      Corresponding author: Wu Guan-Hao, guanhaowu@mail.tsinghua.edu.cn
    • Funds: Project supported by the Training Program of Innovation and Entrepreneurship for Undergraduates, China (Grant No. 201510003B022), the Foundation of the Laboratory of High-accuracy Measurement of Spacecraft, China, the National Natural Science Foundation of China (Grant NO. 61575105), the Funding of State Key Laboratory of Transient Optics and Photonics, China (Grant NO. SKLST201406), and the Young Elite Teacher Project of Beijing Higher Education, China (Grant No. YETP0085).
    [1]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [2]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [3]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601 (in Chinese) [秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 物理学报 61 240601]

    [4]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [5]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [6]

    Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G, Jiang H F 2015 Chin. Phys. B 24 064209

    [7]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [8]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [9]

    Minoshima K, Inaba H, Matsumoto H 2007 Digest of the IEEE/LEOS Summer Topical Meetings Portland, OR, United States, July 23-25, 2007 p186

    [10]

    Joo K N, Kim S W 2006 Opt. Express 14 5954

    [11]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photonics 3 351

    [12]

    Wu G H, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [13]

    Newbury N R 2011 Nature Photonics 5 186

    [14]

    Hua Q, Zhou W H, Xu Y 2012 Metrology { Measurement Technology 32 1 (in Chinese) [华卿, 周维虎, 许艳 2012 计测技术 32 1]

    [15]

    Edln B 1966 Metrologia 2 71

    [16]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [17]

    Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613

    [18]

    Doloca N R, Melners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

  • [1]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [2]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [3]

    Qin P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601 (in Chinese) [秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 物理学报 61 240601]

    [4]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [5]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [6]

    Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G, Jiang H F 2015 Chin. Phys. B 24 064209

    [7]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [8]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [9]

    Minoshima K, Inaba H, Matsumoto H 2007 Digest of the IEEE/LEOS Summer Topical Meetings Portland, OR, United States, July 23-25, 2007 p186

    [10]

    Joo K N, Kim S W 2006 Opt. Express 14 5954

    [11]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photonics 3 351

    [12]

    Wu G H, Takahashi M, Inaba H, Minoshima K 2013 Opt. Lett. 38 2140

    [13]

    Newbury N R 2011 Nature Photonics 5 186

    [14]

    Hua Q, Zhou W H, Xu Y 2012 Metrology { Measurement Technology 32 1 (in Chinese) [华卿, 周维虎, 许艳 2012 计测技术 32 1]

    [15]

    Edln B 1966 Metrologia 2 71

    [16]

    Bnsch G, Potulski E 1998 Metrologia 35 133

    [17]

    Hochrein T, Wilk R, Mei M, Holzwarth R, Krumbholz N, Koch M 2010 Opt. Express 18 1613

    [18]

    Doloca N R, Melners-Hagen K, Wedde M, Pollinger F, Abou-Zeid A 2010 Meas. Sci. Technol. 21 115302

计量
  • 文章访问数:  11807
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-01-07
  • 刊出日期:  2016-04-05

/

返回文章
返回