搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多端口波导结构的宽频带声触发器

庞乃琦 王垠 葛勇 施斌杰 袁寿其 孙宏祥

引用本文:
Citation:

基于多端口波导结构的宽频带声触发器

庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥

Broadband acoustic triggers based on multiport waveguide structures

Pang Nai-Qi, Wang Yin, Ge Yong, Shi Bin-Jie, Yuan Shou-Qi, Sun Hong-Xiang
PDF
HTML
导出引用
  • 基于线性相干及相位调控机制设计制备了两类声学触发器, 所设计的声学触发器由相控单元和多端口波导结构组成, 其宽度与长度分别为0.32λ和0.82λ (λ为声波波长), 具有亚波长结构特征. 基于相控单元的相位调制及声波的线性相干机制, 分别实现了T触发器和D触发器的声学逻辑功能, 且相对带宽(工作带宽与工作频带的中心频率之比)分别可以达到0.23和0.22. 实验测量与数值模拟的结果吻合很好. 本文所提出的声触发器具有宽频带、亚波长尺寸及结构简单等特点, 可为设计新型声触发器及声逻辑门提供理论方案与原理性器件.
    The study of acoustic information processing has attracted great attention owing to its advantages of anti-electromagnetic interference and low energy consumption. Acoustic logic device, as a fundamental component, plays an important role in designing integrated acoustic systems. In the past few years, with the rapid development of sonic crystals, acoustic metamaterials and metasurfaces, researchers have demonstrated a variety of acoustic logic gates based on different mechanisms, and have devoted their efforts to the promotion of the practical applications. The more complex acoustic triggers with broad bandwidth and subwavelength size are very important for developing integrated sound devices, but it is difficult to realize them. In this work, we design two types of acoustic triggers based on the mechanisms of linear interference and phase modulation. The acoustic trigger with a width of 0.32λ and length of 0.82λ is composed of phased unit cells and multi-port waveguide structures, showing a subwavelength structure. Based on the phase modulation of the phased unit cells and the mechanism of linear interferences, the acoustic T-type trigger and D-type trigger with the same threshold are designed and demonstrated experimentally. The corresponding working bands of the T-type and D-type triggers are 3.293–4.069 kHz and 3.400–4.138 kHz, and their fractional bandwidths (the ratio of the bandwidth to the center frequency) can reach about 0.23 and 0.22, respectively, showing a broadband characteristic of both triggers. The mechanism of the T-type trigger is attributed to the linear interference caused by two phased unit cells with a phase difference of π. However, the realization of the D-type trigger is closely related to the incident sound energy and the phase modulation caused by the phased unit cell in the control port. The measured results and simulated results agree well with each other. Compared with other types of acoustic logic devices, the designed acoustic triggers have the advantages of broad bandwidth, subwavelength size, same threshold, and passive structure, as well as being easy to integrate, thus providing great potential applications in acoustic computing, acoustic communication, acoustic information processing and integrated acoustics. Our experimental demonstration of acoustic triggers can further promote the theoretical and experimental investigations of basic acoustic components.
      通信作者: 孙宏祥, jsdxshx@ujs.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12274183, 12174159)和国家重点研发计划 (批准号: 2020YFC1512403)资助的课题.
      Corresponding author: Sun Hong-Xiang, jsdxshx@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274183, 12174159) and the National Key R&D Program of China (Grant No. 2020YFC1512403).
    [1]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nat. Mater. 9 989Google Scholar

    [2]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [3]

    Liang B, Kan W, Zou X, Yin L, Cheng J 2014 Appl. Phys. Lett. 105 083510Google Scholar

    [4]

    Babaee S, Viard N, Wang P, Fang N X, Bertoldi K 2016 Adv. Mater. 28 1631Google Scholar

    [5]

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [6]

    Zuo S Y, Wei Q, Tian Y, Cheng Y, Liu X J 2018 Sci. Rep. 8 10103Google Scholar

    [7]

    Wu Y D 2021 Prog. Electromagn. Res. 170 79Google Scholar

    [8]

    Li F, Anzel P, Yang J, Kevrekidis P G, Daraio C 2014 Nat. Commun. 5 5311Google Scholar

    [9]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [10]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [11]

    Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K, Deymier P A 2011 J. Acoust. Soc. Am. 130 1919Google Scholar

    [12]

    Zhang T, Cheng Y, Guo J Z, Xu J Y, Liu X J 2015 Appl. Phys. Lett. 106 113503Google Scholar

    [13]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [14]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [15]

    Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar J E S, Cummer S A, Huang J 2020 Nat. Commun. 11 762Google Scholar

    [16]

    Jia D, Wang Y, Ge Y, Yuan S Q, Sun H X 2021 Prog. Electromagn. Res. 172 13Google Scholar

    [17]

    Yan Q H, Chen H S, Yang Y H 2021 Prog. Electromagn. Res. 172 33Google Scholar

    [18]

    李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科 2022 物理学报 71 244302Google Scholar

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 244302Google Scholar

    [19]

    Lu Y J, Wang Y, Ge Y, Yuan S Q, Jia D, Sun H X, Liu X J 2022 Appl. Phys. Lett. 121 123506Google Scholar

    [20]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [21]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [22]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [23]

    Lai Y, Wu Y, Sheng P, Zhang Z Q 2011 Nat. Mater. 10 620Google Scholar

    [24]

    Liang Z, Li J 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [25]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [26]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [27]

    Zhang T, Cheng Y, Yuan B G, Guo J Z, Liu X J 2016 Appl. Phys. Lett. 108 183508Google Scholar

    [28]

    Zuo C Y, Xia J P, Sun H X, Ge Y, Yuan S Q, Liu X J 2017 Appl. Phys. Lett. 111 243501Google Scholar

    [29]

    Wang Y, Xia J P, Sun H X, Yuan S Q, Liu X J 2019 Sci. Rep. 9 8355Google Scholar

    [30]

    Li Z P, Cao G T, Li C H, Dong S H, Deng Y, Liu X K, Ho J S, Qiu C W 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [31]

    胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 244302Google Scholar

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 244302Google Scholar

    [32]

    Liao G X, Wang Z W, Luan C C, Liu J P, Yao X H, Fu J Z 2021 Smart Mater. Struct. 30 045021Google Scholar

    [33]

    Hazra S, Ghosh B, Sarkar P P 2019 J. Opt. 48 375Google Scholar

    [34]

    Bharti G K, Sonkar R K 2022 Opt. Quantum Electron. 54 176Google Scholar

  • 图 1  (a) 相控单元示意图; (b) 频率为3.43 kHz的声波通过具有不同参数θ的单元产生的相位延迟与透射率; (c) 声触发器示意图. T和Qn端口的红色箭头表示输入声信号, Qn+1端口的蓝色箭头表示输出声信号

    Fig. 1.  (a) Schematic of a phased unit cell; (b) phase delays (blue solid line) and transmissions (red dashed line) of sound wave with frequency of 3.43 kHz caused by the phased unit cells with different values of θ; (c) schematic of an acoustic trigger. The red arrows at the ports T and Qn represent input sound signals, and the blue arrows at the port Qn+1 are output sound signals.

    图 2  (a) 数值模拟频率为3.43 kHz不同输入态激发T触发器产生的声压幅值场分布; (b), (c) 对应的输出端Qn+1的声能级和真值表

    Fig. 2.  (a) Simulated pressure amplitude distributions caused by the T-type trigger with different input states at 3.43 kHz; (b), (c) simulated acoustic intensity levels at the output port Qn+1 and truth table.

    图 3  数值模拟声波通过具有不同参数θ的单元(斜挡板宽度为3w)产生的相位延迟 (蓝色实线)及透射率(红色虚线)

    Fig. 3.  Simulated phase delays (blue solid line) and transmissions (red dashed line) caused by the phased unit cells with different values of θ.

    图 4  (a) 数值模拟频率为3.43 kHz不同输入态激发D触发器产生的声压幅值场分布; (b), (c)对应的输出端Qn+1的声能级和真值表

    Fig. 4.  (a) Simulated pressure amplitude distributions caused by the D-type trigger with different input states at 3.43 kHz; (b), (c) simulated acoustic intensity levels at the output port Qn+1 and truth table.

    图 5  (a) 实验装置示意图; (b), (c) T型与D型触发器样品照片; (d), (e) 实验测量的频率为3.43 kHz的不同输入态声波激发T触发器和D触发器对应输出端Qn+1的声能级

    Fig. 5.  (a) Schematic of experimental set-up; (b), (c) photographs of the T-type trigger and D-type trigger; (d), (e) experimental measurement of the acoustic intensity levels at the output port Qn+1 of T-type trigger and D-type trigger at a frequency of 3.43 kHz.

    图 6  T触发器(a)和D触发器(b)输出端处的不同输入态对应的声能级谱. 黑色阴影区域范围分别为(a) 3.293— 4.069 kHz, (b) 3.400—4.138 kHz

    Fig. 6.  Measured intensity level spectra at the output ports of the T-type trigger (a) and D-type trigger (b) for different input states. Black shaded regions cover the ranges of 3.293–4.069 kHz in panel (a) and 3.400–4.138 kHz in panel (b).

  • [1]

    Liang B, Guo X S, Tu J, Zhang D, Cheng J C 2010 Nat. Mater. 9 989Google Scholar

    [2]

    Li X F, Ni X, Feng L, Lu M H, He C, Chen Y F 2011 Phys. Rev. Lett. 106 084301Google Scholar

    [3]

    Liang B, Kan W, Zou X, Yin L, Cheng J 2014 Appl. Phys. Lett. 105 083510Google Scholar

    [4]

    Babaee S, Viard N, Wang P, Fang N X, Bertoldi K 2016 Adv. Mater. 28 1631Google Scholar

    [5]

    Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296Google Scholar

    [6]

    Zuo S Y, Wei Q, Tian Y, Cheng Y, Liu X J 2018 Sci. Rep. 8 10103Google Scholar

    [7]

    Wu Y D 2021 Prog. Electromagn. Res. 170 79Google Scholar

    [8]

    Li F, Anzel P, Yang J, Kevrekidis P G, Daraio C 2014 Nat. Commun. 5 5311Google Scholar

    [9]

    Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [10]

    Lu M H, Zhang C, Feng L, Zhao J, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N, Ming N B 2007 Nat. Mater. 6 744Google Scholar

    [11]

    Bringuier S, Swinteck N, Vasseur J O, Robillard J F, Runge K, Muralidharan K, Deymier P A 2011 J. Acoust. Soc. Am. 130 1919Google Scholar

    [12]

    Zhang T, Cheng Y, Guo J Z, Xu J Y, Liu X J 2015 Appl. Phys. Lett. 106 113503Google Scholar

    [13]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [14]

    Xia J P, Jia D, Sun H X, Yuan S Q, Ge Y, Si Q R, Liu X J 2018 Adv. Mater. 30 1805002Google Scholar

    [15]

    Tian Z, Shen C, Li J, Reit E, Bachman H, Socolar J E S, Cummer S A, Huang J 2020 Nat. Commun. 11 762Google Scholar

    [16]

    Jia D, Wang Y, Ge Y, Yuan S Q, Sun H X 2021 Prog. Electromagn. Res. 172 13Google Scholar

    [17]

    Yan Q H, Chen H S, Yang Y H 2021 Prog. Electromagn. Res. 172 33Google Scholar

    [18]

    李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科 2022 物理学报 71 244302Google Scholar

    Li Y M, Kong P, Bi R G, He Z J, Deng K 2022 Acta Phys. Sin. 71 244302Google Scholar

    [19]

    Lu Y J, Wang Y, Ge Y, Yuan S Q, Jia D, Sun H X, Liu X J 2022 Appl. Phys. Lett. 121 123506Google Scholar

    [20]

    Li J, Chan C T 2004 Phys. Rev. E 70 055602Google Scholar

    [21]

    Fang N, Xi D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [22]

    Li J, Fok L, Yin X, Bartal G, Zhang X 2009 Nat. Mater. 8 931Google Scholar

    [23]

    Lai Y, Wu Y, Sheng P, Zhang Z Q 2011 Nat. Mater. 10 620Google Scholar

    [24]

    Liang Z, Li J 2012 Phys. Rev. Lett. 108 114301Google Scholar

    [25]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [26]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [27]

    Zhang T, Cheng Y, Yuan B G, Guo J Z, Liu X J 2016 Appl. Phys. Lett. 108 183508Google Scholar

    [28]

    Zuo C Y, Xia J P, Sun H X, Ge Y, Yuan S Q, Liu X J 2017 Appl. Phys. Lett. 111 243501Google Scholar

    [29]

    Wang Y, Xia J P, Sun H X, Yuan S Q, Liu X J 2019 Sci. Rep. 9 8355Google Scholar

    [30]

    Li Z P, Cao G T, Li C H, Dong S H, Deng Y, Liu X K, Ho J S, Qiu C W 2021 Prog. Electromagn. Res. 171 1Google Scholar

    [31]

    胥强荣, 沈承, 韩峰, 卢天健 2021 物理学报 70 244302Google Scholar

    Xu Q R, Shen C, Han F, Lu T J 2021 Acta Phys. Sin. 70 244302Google Scholar

    [32]

    Liao G X, Wang Z W, Luan C C, Liu J P, Yao X H, Fu J Z 2021 Smart Mater. Struct. 30 045021Google Scholar

    [33]

    Hazra S, Ghosh B, Sarkar P P 2019 J. Opt. 48 375Google Scholar

    [34]

    Bharti G K, Sonkar R K 2022 Opt. Quantum Electron. 54 176Google Scholar

  • [1] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [2] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [4] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论. 物理学报, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [5] 戴殊韬, 江涛, 吴丽霞, 吴鸿春, 林文雄. 单脉冲时间精确可控的单纵模Nd:YAG激光器. 物理学报, 2019, 68(13): 134202. doi: 10.7498/aps.68.20190393
    [6] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [7] 康达, 罗斌, 闫连山, 潘炜, 邹喜华. 含间隔层的增益导引-折射率反导引平面波导激光器中高阶模式抑制研究. 物理学报, 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [8] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [9] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [10] 袁强, 赵文轩, 马睿, 张琛, 赵伟, 王爽, 冯晓强, 王凯歌, 白晋涛. 基于偏振光相位调制的超衍射极限空间结构光研究. 物理学报, 2017, 66(11): 110201. doi: 10.7498/aps.66.110201
    [11] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [12] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [13] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [14] 苏倩倩, 张国文, 蒲继雄. 高斯光束经表面有缺陷的厚非线性介质的传输特性. 物理学报, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [15] 罗博文, 董建绩, 王晓, 黄德修, 张新亮. 基于相位调制和线性滤波的多信道多功能光学微分器. 物理学报, 2012, 61(9): 094213. doi: 10.7498/aps.61.094213
    [16] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [17] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [18] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 张绘蓝, 张光勇, 王 程, 刘时雄, 刘劲松. 全息明孤子的波导特性. 物理学报, 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
计量
  • 文章访问数:  1599
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 修回日期:  2023-05-23
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回