搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

永磁同步风力发电机随机分岔现象的全局分析

杨黎晖 葛扬 马西奎

引用本文:
Citation:

永磁同步风力发电机随机分岔现象的全局分析

杨黎晖, 葛扬, 马西奎

Global analysis of stochastic bifurcation in permanent magnet synchronous generator for wind turbine system

Yang Li-Hui, Ge Yang, Ma Xi-Kui
PDF
导出引用
  • 永磁同步风力发电机在运行过程中不可避免地会受到风能的随机干扰,本文建立了在输入机械转矩存在随机干扰情况下永磁同步风力发电机的数学模型,采用胞映射方法分析了随机干扰强度变化时系统全局结构的演化行为,并通过数值模拟对理论分析进行验证.研究结果表明,随着随机干扰强度的增大,系统中会出现随机内部激变和随机边界激变,即由于随机吸引子与其吸引域内的随机鞍发生碰撞而产生的随机分岔现象和由于随机吸引子与其吸引域边界发生碰撞而产生的随机分岔现象.研究结果揭示了随机干扰对永磁同步风力发电机运行性能影响的机理,为永磁同步风力发电系统的运行和设计提供了理论依据.
    The permanent magnet synchronous generator (PMSG) for wind turbine system operating under inevitable stochastic disturbance from wind power is a nonlinear stochastic dynamical system. With the random interaction and nonlinearity, the intense nonlinear stochastic oscillation is likely to happen in such a system, causing the system to be unstable or even collapse. However, the PMSG is usually considered as a deterministic system when analyzing its nonlinear dynamic behaviors in the past researches. Such a simplification can lead to wrong predictions for the system stability and reliability. This paper aims to discuss the effect of the stochastic disturbance on the nonlinear dynamic behavior of the PMSG. Based on the derived PMSG model considering the stochastic disturbance from the input mechanical torque, the evolution of the system global structure with the stochastic intensity is investigated using the generalized cell mapping digraph method. Meanwhile, the occurrence process and development process of the stochastic bifurcation are illustrated. Based on this global analysis, the intrinsic mechanism for the effect of the stochastic disturbance on the operating performances of the PMSG is revealed. Finally, the numerical simulations based on the Euler-Maruyama algorithm are carried out to validate the results of the theoretical analysis. The results present that as the intensity of the stochastic disturbance increases, two kinds of stochastic bifurcations can be observed in the PMSG system according to the definition of a sudden change in characteristic of the stochastic attractor. One is the stochastic interior crisis that occurs when a stochastic attractor collides with a stochastic saddle in its attraction basin interior, leading to the abrupt increase of the attractor and the disappearance of the saddle. This kind of bifurcation results in the intense stochastic oscillation and instability of the PMSG system. Another stochastic bifurcation is the stochastic boundary crisis which occurs when a stochastic attractor collides with the boundary of its attraction basin and results in the disappearance of the attractor. This sudden change of the number of stochastic attractors induces the stable solution set to vanish and thus the PMSG system to collapse. In a word, even the stochastic disturbance with small intensity may lead to the complete destruction of the stable structure of the PMSG, inducing the system to suffer a strong disordered oscillation or the operation to collapse. The results of this paper can provide significant theoretic reference for both practically operating and designing the PMSG for wind turbine systems.
      通信作者: 杨黎晖, lihui.yang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51207122)和陕西省自然科学基础研究计划(批准号:2016JQ5034)资助的课题.
      Corresponding author: Yang Li-Hui, lihui.yang@mail.xjtu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51207122) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JQ5034).
    [1]

    Zhang B, Li Z, Mao Z Y, Pang M X 2001 Proc. CSEE 21 13 (in Chinese)[张波, 李忠, 毛宗源, 庞敏熙 2001 中国电机工程学报 21 13]

    [2]

    Xue W, Guo Y L, Chen Z Q 2009 Acta Phys. Sin. 58 8146 (in Chinese)[薛薇, 郭彦岭, 陈增强 2009 物理学报 58 8146]

    [3]

    Wei D Q, Luo X S, Fang J Q, Wang B H 2006 Acta Phys. Sin. 55 54 (in Chinese)[韦笃取, 罗晓曙, 方锦清, 汪秉宏 2006 物理学报 55 54]

    [4]

    Rasoolzadeh A, Tavazoei M S 2012 Phys. Lett. A 377 73

    [5]

    Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese)[杨国良, 李惠光 2009 物理学报 58 7552]

    [6]

    Zheng G, Zou J X, Xu H B, Qin G 2011 Acta Phys. Sin. 60 060506 (in Chinese)[郑刚, 邹见效, 徐红兵, 秦钢 2011 物理学报 60 060506]

    [7]

    Wang L, Li Y H, Lu G L, Zhu X H 2011 Electric Power Automation Equipment 31 45 (in Chinese)[王磊, 李颖晖, 逯国亮, 朱喜华 2011 电力自动化设备 31 45]

    [8]

    Ren L N, Liu F C, Jiao X H, Li J Y 2012 Acta Phys. Sin. 61 060506 (in Chinese)[任丽娜, 刘福才, 焦晓红, 李俊义 2012 物理学报 61 060506]

    [9]

    Messadi M, Mellit A, Kemih K, Ghanes M 2015 Chin. Phys. B 24 010502

    [10]

    Hsu C S 1980 J. Appl. Mech. 47 931

    [11]

    Xu W 2013 Numerical Analysis Methods for Stochastic Dynamical System (Beijing:Science Press) p43 (in Chinese)[徐伟 2013 非线性随机动力学的若干数值方法及应用 (北京:科学出版社) 第43页]

    [12]

    Hsu C S 1981 J. Appl. Mech. 48 634

    [13]

    Tongue B H, Gu K 1988 J. Sound Vib. 125 169

    [14]

    Jiang J, Xu J X 1994 Phys. Lett. A 188 137

    [15]

    Hsu C S 1995 Int. J. Bifurcat. Chaos 5 1085

    [16]

    Xu W, He Q, Rong H W, Fang T 2003 Acta Phys. Sin. 52 1365 (in Chinese)[徐伟, 贺群, 戎海武, 方同 2003 物理学报 52 1365]

    [17]

    Xu W, Yue X L 2010 Sci. China:Technol. Sci. 53 664

    [18]

    Li Z G, Jiang J, Hong L 2015 Int. J. Bifurcat. Chaos 25 1550109

    [19]

    Arnold L 1998 Random Dynamical Systems (Berlin, Heidelberg, New York:Springer) pp34-35

    [20]

    Levitas J, Weller T, Singer J 1994 J. Sound Vib. 176 641

    [21]

    He Q, Xu W, Li S, Xiao Y Z 2008 Acta Phys. Sin. 57 4021 (in Chinese)[贺群, 徐伟, 李爽, 肖玉柱 2008 物理学报 57 4021]

    [22]

    Gong P L, Xu J X 1998 Appl. Math. Mech. 19 1087 (in Chinese)[龚璞林, 徐健学 1998 应用数学和力学 19 1087]

    [23]

    Zhu W Q, Yu J S 1987 J. Sound Vib. 117 421

    [24]

    Hong L, Xu J X 2002 Acta Phys. Sin. 51 2694 (in Chinese)[洪灵, 徐健学 2002 物理学报 51 2694]

    [25]

    Guan Y H 2009 Statistics (Beijing:Higher Education Press) pp66-83 (in Chinese)[管于华 2009 统计学 (北京:高等教育出版社) 第66–83页]

  • [1]

    Zhang B, Li Z, Mao Z Y, Pang M X 2001 Proc. CSEE 21 13 (in Chinese)[张波, 李忠, 毛宗源, 庞敏熙 2001 中国电机工程学报 21 13]

    [2]

    Xue W, Guo Y L, Chen Z Q 2009 Acta Phys. Sin. 58 8146 (in Chinese)[薛薇, 郭彦岭, 陈增强 2009 物理学报 58 8146]

    [3]

    Wei D Q, Luo X S, Fang J Q, Wang B H 2006 Acta Phys. Sin. 55 54 (in Chinese)[韦笃取, 罗晓曙, 方锦清, 汪秉宏 2006 物理学报 55 54]

    [4]

    Rasoolzadeh A, Tavazoei M S 2012 Phys. Lett. A 377 73

    [5]

    Yang G L, Li H G 2009 Acta Phys. Sin. 58 7552 (in Chinese)[杨国良, 李惠光 2009 物理学报 58 7552]

    [6]

    Zheng G, Zou J X, Xu H B, Qin G 2011 Acta Phys. Sin. 60 060506 (in Chinese)[郑刚, 邹见效, 徐红兵, 秦钢 2011 物理学报 60 060506]

    [7]

    Wang L, Li Y H, Lu G L, Zhu X H 2011 Electric Power Automation Equipment 31 45 (in Chinese)[王磊, 李颖晖, 逯国亮, 朱喜华 2011 电力自动化设备 31 45]

    [8]

    Ren L N, Liu F C, Jiao X H, Li J Y 2012 Acta Phys. Sin. 61 060506 (in Chinese)[任丽娜, 刘福才, 焦晓红, 李俊义 2012 物理学报 61 060506]

    [9]

    Messadi M, Mellit A, Kemih K, Ghanes M 2015 Chin. Phys. B 24 010502

    [10]

    Hsu C S 1980 J. Appl. Mech. 47 931

    [11]

    Xu W 2013 Numerical Analysis Methods for Stochastic Dynamical System (Beijing:Science Press) p43 (in Chinese)[徐伟 2013 非线性随机动力学的若干数值方法及应用 (北京:科学出版社) 第43页]

    [12]

    Hsu C S 1981 J. Appl. Mech. 48 634

    [13]

    Tongue B H, Gu K 1988 J. Sound Vib. 125 169

    [14]

    Jiang J, Xu J X 1994 Phys. Lett. A 188 137

    [15]

    Hsu C S 1995 Int. J. Bifurcat. Chaos 5 1085

    [16]

    Xu W, He Q, Rong H W, Fang T 2003 Acta Phys. Sin. 52 1365 (in Chinese)[徐伟, 贺群, 戎海武, 方同 2003 物理学报 52 1365]

    [17]

    Xu W, Yue X L 2010 Sci. China:Technol. Sci. 53 664

    [18]

    Li Z G, Jiang J, Hong L 2015 Int. J. Bifurcat. Chaos 25 1550109

    [19]

    Arnold L 1998 Random Dynamical Systems (Berlin, Heidelberg, New York:Springer) pp34-35

    [20]

    Levitas J, Weller T, Singer J 1994 J. Sound Vib. 176 641

    [21]

    He Q, Xu W, Li S, Xiao Y Z 2008 Acta Phys. Sin. 57 4021 (in Chinese)[贺群, 徐伟, 李爽, 肖玉柱 2008 物理学报 57 4021]

    [22]

    Gong P L, Xu J X 1998 Appl. Math. Mech. 19 1087 (in Chinese)[龚璞林, 徐健学 1998 应用数学和力学 19 1087]

    [23]

    Zhu W Q, Yu J S 1987 J. Sound Vib. 117 421

    [24]

    Hong L, Xu J X 2002 Acta Phys. Sin. 51 2694 (in Chinese)[洪灵, 徐健学 2002 物理学报 51 2694]

    [25]

    Guan Y H 2009 Statistics (Beijing:Higher Education Press) pp66-83 (in Chinese)[管于华 2009 统计学 (北京:高等教育出版社) 第66–83页]

  • [1] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性. 物理学报, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [2] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [3] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [4] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [5] 万频, 詹宜巨, 李学聪, 王永华. 一种单稳随机共振系统信噪比增益的数值研究. 物理学报, 2011, 60(4): 040502. doi: 10.7498/aps.60.040502
    [6] 顾仁财, 许勇, 郝孟丽, 杨志强. Lévy稳定噪声激励下的Duffing-van der Pol振子的随机分岔. 物理学报, 2011, 60(6): 060513. doi: 10.7498/aps.60.060513
    [7] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究. 物理学报, 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [8] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解. 物理学报, 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [9] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [10] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [11] 莫嘉琪, 程燕. 广义Boussinesq方程的同伦映射近似解. 物理学报, 2009, 58(7): 4379-4382. doi: 10.7498/aps.58.4379
    [12] 柳宁, 李俊峰, 王天舒. 双足模型步行中的倍周期步态和混沌步态现象. 物理学报, 2009, 58(6): 3772-3779. doi: 10.7498/aps.58.3772
    [13] 邹建龙, 马西奎. 一类由饱和引起的非线性现象. 物理学报, 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [14] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [15] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [16] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [17] 莫嘉琪, 林万涛. 副热带圈和赤道太平洋年代际变更的海-气振子模型解的同伦映射方法. 物理学报, 2007, 56(10): 5565-5568. doi: 10.7498/aps.56.5565
    [18] 马少娟, 徐 伟, 李 伟. 基于Laguerre多项式逼近法的随机双势阱Duffing系统的分岔和混沌研究. 物理学报, 2006, 55(8): 4013-4019. doi: 10.7498/aps.55.4013
    [19] 徐 伟, 贺 群, 戎海武, 方 同. Duffing-van der Pol振子随机分岔的全局分析. 物理学报, 2003, 52(6): 1365-1371. doi: 10.7498/aps.52.1365
    [20] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
计量
  • 文章访问数:  5119
  • PDF下载量:  525
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-05
  • 修回日期:  2017-07-02
  • 刊出日期:  2017-10-05

/

返回文章
返回