搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向显示应用的微米发光二极管外延和芯片关键技术综述

潘祚坚 陈志忠 焦飞 詹景麟 陈毅勇 陈怡帆 聂靖昕 赵彤阳 邓楚涵 康香宁 李顺峰 王琦 张国义 沈波

引用本文:
Citation:

面向显示应用的微米发光二极管外延和芯片关键技术综述

潘祚坚, 陈志忠, 焦飞, 詹景麟, 陈毅勇, 陈怡帆, 聂靖昕, 赵彤阳, 邓楚涵, 康香宁, 李顺峰, 王琦, 张国义, 沈波

A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application

Pan Zuo-Jian, Chen Zhi-Zhong, Jiao Fei, Zhan Jing-Lin, Chen Yi-Yong, Chen Yi-Fan, Nie Jing-Xin, Zhao Tong-Yang, Deng Chu-Han, Kang Xiang-Ning, Li Shun-Feng, Wang Qi, Zhang Guo-Yi, Shen Bo
PDF
HTML
导出引用
  • 随着显示技术的不断发展, 高度微型化和集成化成为显示领域主要的发展趋势. 微米发光二极管(light-emitting diode, LED)显示是一种由微米级半导体发光单元组成的阵列显示技术, 在亮度、分辨率、对比度、能耗、使用寿命、响应速度和稳定性等方面相比于液晶显示和有机发光二极管显示均具有巨大的优势, 应用前景十分广阔, 同时也被视为下一代显示技术. 目前商用的5G通信技术与显示领域的虚拟现实、增强现实和超高清视频等技术的结合, 将进一步推动微米LED显示产业的发展. 在面临发展机遇的同时, 微米LED显示领域也存在着一些基础科学技术问题需要解决. 本文主要总结了微米LED显示从2000年以来的一些研究进展, 重点介绍了微米LED显示在外延生长和芯片工艺两方面存在的主要问题和可能的解决方案. 在外延生长方面主要介绍了缺陷控制、极化电场控制和波长均匀性等研究进展, 芯片工艺方面主要介绍了全彩色显示、巨量转移和检测技术等进展情况, 并对微米LED显示在这两方面的发展趋势进行了讨论.
    The continuous miniaturization and integration of pixelated devices have become a main trend in the field of display. Micro light-emitting diode (micro-LED) display is composed of an array of LEDs that are sub-50-micrometers in length. It has huge advantages in brightness, resolution, contrast, power consumption, lifetime, response speed and reliability compared with liquid crystal display (LCD) and organic LED (OLED) display. Consequently, micro-LED display is regarded as the next-generation display technology with high potential applications, such as virtual reality (VR), augmented reality (AR), mobile phones, tablet computers, high-definition TVs and wearable devices. Currently, the combination of commercial 5G communication technology with VR/AR display, ultra high definition video technologies will further prompt the development of micro-LED display industry. However, some basic scientific and technological problems in micro-LED display remain to be resolved. As the chip size shrinks to below 50 μm, some problems that are not serious for large-sized LEDs appear for micro-LEDs. These problems include crystalline defects, wavelength uniformity, full-color emmision, massively tranferring and testing, etc. In the past two decades, various solutions to those problems have been proposed, which have greatly promoted the progress of micro-LED display. In this paper, an overview of micro-LED display since 2000 is given firstly, which includes the main research results and application achievements. Secondly the issues involved in the wafer epitaxy and chip process of micro-LEDs and possible solutions are discussed based on the display application in detail. The surface state induced by the dangling bonds and dry etching damages are concerned for the nonradiative recombination at a low injection level. The remedies are provided for those surface states, such as atomic-layer deposition and neutral beam etching. Some methods to reduce the threading dislocation and suppress the polarization field are summarized for micro-LED epitaxial growth. Moreover, the GaN-based LEDs on Si (100) substrate are also introduced for the future integration of micro-LEDs into the Si-based integrated circuits. As to the wavelength uniformity, the MOCVD equipment and growth technology including the laser treatment are discussed. In the chip processing part, the full-color display, mass transfer and effective inspection technology are discussed. Assembling RGB individual LEDs, quantum dot phosphor material and nanocoloumn LEDs are different routes for full-color display. Their trends in the future are provided. The pick and place, laser lift-off technologies, are strengthened in the massively transferring for micro-LEDs. In the massively and rapidly inspection technologies, the photoluminscence combined with Raman scattering, the electroluminescence combined with digital camera are discussed. Finally, the summary and outlook in these issues are also provided.
      通信作者: 陈志忠, zzchen@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0400602)、国家自然科学基金(批准号: 61674005)、广东省重点科技计划(批准号: 2016B010111001)和河南省科技计划(批准号: 161100210200)资助的课题
      Corresponding author: Chen Zhi-Zhong, zzchen@pku.edu.cn
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2016YFB0400602), the National Natural Science Foundation of China (Grant No. 61674005), the Science and Technology Major Project of Guangdong Province, China (Grant No. 2016B010111001), and the Science and Technology Planning Project of Henan Province, China (Grant No. 161100210200)
    [1]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687Google Scholar

    [2]

    Fan Z Y, Lin J Y, Jiang H X 2008 J. Phys. D 4145 94001Google Scholar

    [3]

    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A 1992 Appl. Phys. Lett. 60 289Google Scholar

    [4]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 2000 Appl. Phys. Lett. 76 631Google Scholar

    [5]

    Jiang H X, Jin S X, Li J, Shakya J, Lin J Y 2001 Appl. Phys. Lett. 78 1303Google Scholar

    [6]

    Jeon C W, Choi H W, Gu E, Dawson M D 2004 IEEE Photon. Technol. Lett. 16 2421Google Scholar

    [7]

    Liu Z J, Chong W C, Wong K M, Lau K M 2013 J. Disp. Technol. 9 678Google Scholar

    [8]

    Chong W C, Cho W K, Liu Z J, Wang C H, Lau K M 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) La Jolla, USA, Oct 19–22, 2014 p1 https://doi.org/10.1109/CSICS.2014.6978524

    [9]

    Liu Z J, Zhang K, Liu Y B, Yan S W, Kwok H S, Deen J, Sun X W 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, Dec 1–5, 2018 p38.1.1 https://doi.org/10.1109/IEDM.2018.8614692

    [10]

    Han H V, Lin H Y, Lin C C, Chong W C, Li J R, Chen K J, Yu P, Chen T M, Chen H M, Lau K M, Kuo H C 2015 Opt. Express 23 32504Google Scholar

    [11]

    Templier F, Benaïssa L, Aventurier B, Nardo C D, Charles M, Daami A, Henry F, Dupré L 2017 SID Symp. Dig. Tech. Pap. 48 268Google Scholar

    [12]

    Bai J, Cai Y, Feng P, Fletcher P, Zhao X, Zhu C, Wang T 2020 ACS Photon. 7 411Google Scholar

    [13]

    Day J, Li J, Lie D Y C, Bradford C, Lin J Y, Jiang H X 2011 Appl. Phys. Lett. 99 031116Google Scholar

    [14]

    Tian P F, McKendry J J D, Gong Z, Zhang S L, Watson S, Zhu D D, Watson I M, Gu E D, Kelly A E, Humphreys C J, Dawson M D 2014 J. Appl. Phys. 115 033112Google Scholar

    [15]

    Ludovic D, Marjorie M, Valentin V, Bernard A, Franck H, François O, Sauveur T, Anis D, Templier F 2017 Proc. SPIE 10104 1010422Google Scholar

    [16]

    Zhang X, Li P A, Zou X B, Jiang J M, Yuen S H, Tang C W, Lau K M 2019 IEEE Photon. Technol. Lett. 31 865Google Scholar

    [17]

    Huang Chen S W, Shen C C, Wu T, Liao Z Y, Chen L F, Zhou J R, Lee C F, Lin C H, Lin C C, Sher C W, Lee P T, Tzou A J, Chen Z, Kuo H C 2019 Photonics Res. 7 416Google Scholar

    [18]

    Jiang H X, Lin J Y 2013 Opt. Express 21 A475Google Scholar

    [19]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Huang Chen S W, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. 8 1557Google Scholar

    [20]

    Ding K, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H 2019 Appl. Sci. 9 1206Google Scholar

    [21]

    Wierer J J, Tansu N 2019 Laser Photonics Rev. 13 1900141Google Scholar

    [22]

    Wasisto H S, Prades J D, Gülink J, Waag A 2019 Appl. Phys. Rev. 6 041315Google Scholar

    [23]

    Lee H E, Shin J H, Park J H, Hong S K, Park S H, Lee S H, Lee J H, Kang I S, Lee K J 2019 Adv. Funct. Mater. 29 1808075Google Scholar

    [24]

    Wong M S, Nakamura S, DenBaars S 2020 ECS J. Solid State Sci. Technol. 9 015012Google Scholar

    [25]

    Zhou X J, Tian P F, Sher C W, Wu J, Liu H Z, Liu R, Kuo H C 2020 Prog. Quantum. Electron. 71 100263Google Scholar

    [26]

    Liu Z J, Lin C H, Hyun B R, Sher C W, Lv Z J, Luo B Q, Jiang F L, Wu T, Ho C H, Kuo H C, He J H 2020 Light Sci. Appl. 9 83Google Scholar

    [27]

    Karpov S 2015 Opt. Quantum Electron 47 1293Google Scholar

    [28]

    Zhan J L, Chen Z Z, Jiao Q, Feng Y L, Li C C, Chen Y F, Chen Y Y, Jiao F, Kang X N, Li S F, Wang Q, Yu T J, Zhang G Y, Shen B 2018 Opt. Express 26 5265Google Scholar

    [29]

    Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y, Shen B 2019 Opt. Express 27 A1146Google Scholar

    [30]

    Hwang D, Mughal A, Pynn C D, Nakamura S, DenBaars S P 2017 Appl. Phys. Express 10 032101Google Scholar

    [31]

    Tian P F, McKendry J J D, Gong Z, Guilhabert B, Watson I M, Gu E D, Chen Z Z, Zhang G Y, Dawson M D 2012 Appl. Phys. Lett. 101 231110Google Scholar

    [32]

    Meyaard D S, Shan Q, Cho J, Fred Schubert E, Han S H, Kim M H, Sone C, Jae Oh S, Kyu Kim J 2012 Appl. Phys. Lett. 100 081106Google Scholar

    [33]

    Konoplev S S, Bulashevich K A, Karpov S Y 2018 Phys. Status Solidi A 215 1700508Google Scholar

    [34]

    Kou J Q, Shen C C, Shao H, Che J M, Hou X, Chu C S, Tian K K, Zhang Y H, Zhang Z H, Kuo H C 2019 Opt. Express 27 A643Google Scholar

    [35]

    Zhao C, Ng T K, Prabaswara A, Conroy M, Jahangir S, Frost T, O'Connell J, Holmes J D, Parbrook P J, Bhattacharya P, Ooi B S 2015 Nanoscale 7 16658Google Scholar

    [36]

    Zuo P, Zhao B, Yan S, Yue G, Yang H J, Li Y F, Wu H Y, Jiang Y, Jia H Q, Zhou J M, Chen H 2016 Opt. Quantum Electron 48 288Google Scholar

    [37]

    Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S, DenBaars S P 2018 Opt. Express 26 21324Google Scholar

    [38]

    Yang C M, Kim D S, Park Y S, Lee J H, Lee Y S, Lee J H 2012 Opt. Photonics J. 02 185Google Scholar

    [39]

    Wong M S, Lee C, Myers D J, Hwang D, Kearns J A, Li T, Speck J S, Nakamura S, DenBaars S P 2019 Appl. Phys. Express 12 097004Google Scholar

    [40]

    Chen W J, Wen X M, Latzel M, Heilmann M, Yang J F, Dai X, Huang S J, Shrestha S, Patterson R, Christiansen S, Conibeer G 2016 ACS Appl. Mater. Interfaces 8 31887Google Scholar

    [41]

    Zhang Y Y, Guo E Q, Li Z, Wei T B, Li J, Yi X Y, Wang G H 2012 IEEE Photon. Technol. Lett. 24 243Google Scholar

    [42]

    Yang Y, Cao X A 2009 J. Vac. Sci. Technol. B 27 2337Google Scholar

    [43]

    Zhu J, Takahashi T, Ohori D, Endo K, Samukawa S, Shimizu M, Wang X L 2019 Phys. Status Solidi A 216 1900380Google Scholar

    [44]

    Usui A, Sunakawa H, Sakai A, Yamaguchi A 1997 Jpn. J. Appl. Phys. 36 7BGoogle Scholar

    [45]

    Nakamura S 1991 Jpn. J. Appl. Phys. 30 L1705Google Scholar

    [46]

    Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353Google Scholar

    [47]

    Ishikawa H, Zhao G-Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492Google Scholar

    [48]

    Feltin E, Dalmasso S, Mierry P D, Beaumont B, Lahrèche H, Bouillé A, Haas H, Leroux M, Gibart P 2001 Jpn. J. Appl. Phys. 40 L738Google Scholar

    [49]

    Kim M H, Do Y G, Kang H C, Noh D Y, Park S J 2001 Appl. Phys. Lett. 79 2713Google Scholar

    [50]

    Cheng J P, Yang X L, Sang L, Guo L, Hu A Q, Xu F J, Tang N, Wang X Q, Shen B 2015 Appl. Phys. Lett. 106 142106Google Scholar

    [51]

    张洁 2019 博士学位论文 (北京: 北京大学)

    Zhang J 2019 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [52]

    Feng Y X, Yang X L, Zhang Z H, Kang D, Zhang J, Liu K H, Li X Z, Shen J F, Liu F, Wang T, Ji P F, Xu F J, Tang N, Yu T J, Wang X Q, Yu D P, Ge W K, Shen B 2019 Adv. Funct. Mater. 29 1905056Google Scholar

    [53]

    Cho C Y, Kwon M K, Park I K, Hong S H, Kim J J, Park S E, Kim S T, Park S J 2011 Opt. Express 19 A943Google Scholar

    [54]

    Matsuoka R, Okimoto T, Nishino K, Naoi Y, Sakai S 2009 J. Cryst. Growth 311 2847Google Scholar

    [55]

    Park J, Moon D, Park S, Park S H, Yoon E 2012 Jpn. J. Appl. Phys. 51 025501Google Scholar

    [56]

    Xu Y, Cao B, He S Y, Qi L, Li Z Y, Cai D M, Zhang Y M, Ren G Q, Wang J F, Wang C H, Xu K 2017 Appl. Phys. Lett. 111 102105Google Scholar

    [57]

    Xu Y, Su X J, Cao B, Li Z Y, Liu Y, Cai D M, Zhang Y M, Wang J F, Wang C H, Xu K 2019 CrystEngComm 21 902Google Scholar

    [58]

    Chung K, Lee K, Tchoe Y, Oh H, Park J, Hyun J K, Yi G C 2019 Nano Energy 60 82Google Scholar

    [59]

    Tadatomo K, Okagawa H, Ohuchi Y, Tsunekawa T, Jyouichi T, Imada Y, Kato M, Kudo H, Taguchi T 2001 Phys. Status Solidi A 188 121Google Scholar

    [60]

    江风益, 刘军林, 王立, 熊传兵, 方文卿, 莫春兰, 汤英文, 王光绪, 徐龙权, 丁杰, 王小兰, 全知觉, 张建立, 张萌, 潘拴, 郑畅达 2015 中国科学: 物理学 力学 天文学 45 067302Google Scholar

    Jiang F Y, Liu J L, Wang L, Xiong C B, Fang W Q, Mo C L, Tang Y W, Wang G X, Xu L Q, Ding J, Wang X L, Quan Z J, Zhang J L, Zhang M, Pan S, Zheng C D 2015 Sci. Sin-Phys. Mech. Astron. 45 067302Google Scholar

    [61]

    Sun Y J, Yu T J, Dai J H, Wang N H, Luo R H, Liang Z W, Zhang N, Li C Y, Kang X N, Zhang G Y 2014 CrystEngComm 16 5458Google Scholar

    [62]

    Gao H Y, Yan F W, Zhang Y, Li J M, Zeng Y P, Wang G H 2008 J. Appl. Phys. 103 014314Google Scholar

    [63]

    Huang H W, Lin C H, Yu C C, Lee B D, Chiu C H, Lai C F, Kuo H C, Leung K M, Lu T C, Wang S C 2008 Nanotechnology 19 185301Google Scholar

    [64]

    Chen J J, Su Y K, Lin C L, Chen S M, Li W L, Kao C C 2008 IEEE Photon. Technol. Lett. 20 1193Google Scholar

    [65]

    Chen Y F, Chen Z Z, Li J Z, Chen Y Y, Li C C, Zhan J L, Yu T J, Kang X N, Jiao F, Li S F, Zhang G Y, Shen B 2018 CrystEngComm 20 6811Google Scholar

    [66]

    Li J Z, Chen Z Z, Jiao Q Q, Feng Y L, Jiang S, Chen Y F, Yu T J, Li S F, Zhang G Y 2015 CrystEngComm 17 4469Google Scholar

    [67]

    Fiorentini V, Bernardini F, Della Sala F, Di Carlo A, Lugli P 1999 Phys. Rev. B 60 8849Google Scholar

    [68]

    Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B, Eastman L 2002 J. Phys. Condens. Matter 14 3399Google Scholar

    [69]

    Zhao H P, Liu G Y, Zhang J, Poplawsky J D, Dierolf V, Tansu N 2011 Opt. Express 19 A991Google Scholar

    [70]

    Zhao H P, Arif R A, Ee Y K, Tansu N 2009 IEEE J. Quantum Electron 15 1104Google Scholar

    [71]

    Zhao H P, Liu G Y, Li X, Arif R, Huang G S, Poplawsky J D, Penn S, Dierolf V, Tansu N 2009 IET Optoelectron. 3 283Google Scholar

    [72]

    Tsai M C, Yen S H, Kuo Y K 2011 Appl. Phys. A 104 621Google Scholar

    [73]

    Arif R A, Ee Y K, Tansu N 2007 Appl. Phys. Lett. 91 091110Google Scholar

    [74]

    Yang Z W, Li R, Wei Q Y, Yu T, Zhang Y Z, Chen W H, Hu X D 2009 Appl. Phys. Lett. 94 061120Google Scholar

    [75]

    Shioda T, Yoshida H, Tachibana K, Sugiyama N, Nunoue S 2012 Phys. Status Solidi A 209 473Google Scholar

    [76]

    Kimura S, Yoshida H, Uesugi K, Ito T, Okada A, Nunoue S 2016 J. Appl. Phys. 120 113104Google Scholar

    [77]

    Alhassan A I, Farrell R M, Saifaddin B, Mughal A, Wu F, DenBaars S P, Nakamura S, Speck J S 2016 Opt. Express 24 17868Google Scholar

    [78]

    Al Muyeed S A, Sun W, Wei X, Song R, Koleske D D, Tansu N, Wierer J J 2017 AIP Adv. 7 105312Google Scholar

    [79]

    Hwang J I, Hashimoto R, Saito S, Nunoue S 2014 Appl. Phys. Expres 7 071003Google Scholar

    [80]

    Sun W, Al Muyeed S A, Song R, Wierer J J, Tansu N 2018 Appl. Phys. Lett. 112 201106Google Scholar

    [81]

    Zhao H P, Liu G Y, Tansu N 2010 Appl. Phys. Lett. 97 131114Google Scholar

    [82]

    Wang T 2016 Semicond. Sci. Technol. 31 093003Google Scholar

    [83]

    Poyiatzis N, Athanasiou M, Bai J, Gong Y, Wang T 2019 Sci. Rep. 9 1383Google Scholar

    [84]

    Bai J, Xu B, Guzman F G, Xing K, Gong Y, Hou Y, Wang T 2015 Appl. Phys. Lett. 107 261103Google Scholar

    [85]

    Li H J, Wong M S, Khoury M, Bonef B, Zhang H J, Chow Y C, Li P P, Kearns J, Taylor A A, Mierry P D, Hassan Z, Nakamura S, DenBaars S P 2019 Opt. Express 27 24154Google Scholar

    [86]

    Huang Chen S W, Huang Y M, Singh K J, Hsu Y C, Liou F J, Song J, Choi J, Lee P T, Lin C C, Chen Z, Han J, Wu T Z, Kuo H C 2020 Photonics Res. 8 630Google Scholar

    [87]

    Strittmatter A, Northrup J E, Johnson N M, Kisin M V, Spiberg P, El-Ghoroury H, Usikov A, Syrkin A 2011 Phys. Status Solidi B 248 561Google Scholar

    [88]

    Zhao Y J, Yan Q M, Huang C Y, Huang S C, Hsu P S, Tanaka S, Pan C C, Kawaguchi Y, Fujito K, Van De Walle C G, Speck J S, DenBaars S P, Nakamura S, Feezell D 2012 Appl. Phys. Lett. 100 201108Google Scholar

    [89]

    Zhang Y, Bai J, Hou Y, Smith R M, Yu X, Gong Y, Wang T 2016 AIP Adv. 6 025201Google Scholar

    [90]

    Monavarian M, Rashidi A, Feezell D 2019 Phys. Status Solidi A 216 1800628Google Scholar

    [91]

    Song J, Choi J, Zhang C, Deng Z, Xie Y J, Han J 2019 ACS Appl. Mater. Interfaces 11 33140Google Scholar

    [92]

    Song J, Han J 2020 Phys. Status Solidi B 257 1900565Google Scholar

    [93]

    Beckers A, Fahle D, Mauder C, Kruecken T, Boyd A R, Heuken M 2018 SID Symp. Dig. Tech. Pap. 49 601Google Scholar

    [94]

    Paranjpe A, Montgomery J, Lee S M, Morath C 2018 SID Symp. Dig. Tech. Pap. 49 597Google Scholar

    [95]

    Armour E, Lu F, Belousov M, Lee D, Quinn W 2009 Semicond. Today 4 82

    [96]

    Liu J L, Zhang J L, Mao Q H, Wu X M, Jiang F Y 2013 CrystEngComm 15 3372Google Scholar

    [97]

    Nishikawa A, Loesing A, Slischka B 2019 SID Symp. Dig. Tech. Pap. 50 591Google Scholar

    [98]

    Aida H, Takeda H, Aota N, Koyama K 2012 Jpn. J. Appl. Phys. 51 016504Google Scholar

    [99]

    Aida H, Aota N, Takeda H, Koyama K 2012 J. Cryst. Growth 361 135Google Scholar

    [100]

    Ohno Y, Kuzuhara M 2001 IEEE Trans. Electron Devices 48 517Google Scholar

    [101]

    Nishikawa A, Groh L, Solari W, Lutgen S 2013 Jpn. J. Appl. Phys. 52 08JB25Google Scholar

    [102]

    Auf der Maur M, Pecchia A, Penazzi G, Rodrigues W, Di Carlo A 2016 Phys. Rev. Lett. 116 027401Google Scholar

    [103]

    Park I K, Kim J Y, Kwon M K, Cho C Y, Lim J H, Park S J 2008 Appl. Phys. Lett. 92 091110Google Scholar

    [104]

    El-Ghoroury H, Yeh M, Chen J C, Li X, Chuang C L 2016 AIP Adv. 6 075316Google Scholar

    [105]

    Boroditsky M, Gontijo I, Jackson M, Vrijen R, Yablonovitch E, Krauss T, Cheng C C, Scherer A, Bhat R, Krames M 2000 J. Appl. Phys. 87 3497Google Scholar

    [106]

    Kang C M, Kong D J, Shim J P, Kim S, Choi S B, Lee J Y, Min J H, Seo D J, Choi S Y, Lee D S 2017 Opt. Express 25 2489Google Scholar

    [107]

    Kang C M, Lee J Y, Kong D J, Shim J P, Kim S, Mun S H, Choi S Y, Park M D, Kim J, Lee D S 2018 ACS Photon. 5 4413Google Scholar

    [108]

    Lee J, Sundar V C, Heine J R, Bawendi M G, Jensen K F 2000 Adv. Mater. 12 1102Google Scholar

    [109]

    Gong Z, Gu E D, Jin S R, Massoubre D, Guilhabert B, Zhang H X, Dawson M D, Poher V, Kennedy G T, French P M W, Neil M A A 2008 J. Phys. D 41 094002Google Scholar

    [110]

    Lee C T, Cheng C J, Lee H Y, Chu Y C, Fang Y H, Chao C H, Wu M H 2015 IEEE Photon. Technol. Lett. 27 2296Google Scholar

    [111]

    Lin H Y, Sher C W, Hsieh D H, Chen X Y, Chen H M P, Chen T M, Lau K M, Chen C H, Lin C C, Kuo H C 2017 Photonics Res. 5 411Google Scholar

    [112]

    Lin C H, Chiang H C, Wang Y T, Yao Y F, Chen C C, Tse W, Wu R N, Chang W Y, Kuo Y, Kiang Y W, Yang C 2018 Opt. Express 26 23629Google Scholar

    [113]

    Chang W Y, Kuo Y, Kiang Y W, Yang C C 2019 Opt. Express 27 A629Google Scholar

    [114]

    Wang Y T, Liu C W, Chen P Y, Wu R N, Ni C C, Cai C J, Kiang Y W, Yang C C 2019 Opt. Lett. 44 5691Google Scholar

    [115]

    Guo W, Zhang M, Banerjee A, Bhattacharya P 2010 Nano Lett. 10 3355Google Scholar

    [116]

    Sekiguchi H, Kishino K, Kikuchi A 2010 Appl. Phys. Lett. 96 231104Google Scholar

    [117]

    Yamano K, Kishino K 2018 Appl. Phys. Lett. 112 091105Google Scholar

    [118]

    Hong Y J, Lee C H, Yoon A, Kim M, Seong H K, Chung H J, Sone C, Park Y J, Yi G C 2011 Adv. Mater. 23 3284Google Scholar

    [119]

    Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019Google Scholar

    [120]

    Lee M L, Yeh Y H, Tu S J, Chen P C, Lai W C, Sheu J K 2015 Opt. Express 23 A401Google Scholar

    [121]

    Funato M, Hayashi K, Ueda M, Kawakami Y, Narukawa Y, Mukai T 2008 Appl. Phys. Lett. 93 021126Google Scholar

    [122]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2005 Nat. Mater. 5 33Google Scholar

    [123]

    Park S I, Xiong Y J, Kim R H, Elvikis P, Meitl M, Kim D H, Wu J, Yoon J, Yu C J, Liu Z J, Huang Y G, Hwang K C, Ferreira P, Li X L, Choquette K, Rogers J A 2009 Science 325 977Google Scholar

    [124]

    Zhang J, De Groote A, Abbasi A, Loi R, O'Callaghan J, Corbett B, Trindade A J, Bower C A, Roelkens G 2017 Opt. Express 25 14290Google Scholar

    [125]

    Corbett B, Loi R, Zhou W, Liu D, Ma Z 2017 Prog. Quantum. Electron. 52 1Google Scholar

    [126]

    De Groote A, Cardile P, Subramanian A Z, Fecioru A M, Bower C, Delbeke D, Baets R, Roelkens G 2016 Opt. Express 24 13754Google Scholar

    [127]

    Bower C A, Meitl M A, Bonafede S, Gomez D, Fecioru A, Kneeburg D 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) San Diego, USA, May 26–29, 2015 p963 https://doi.org/10.1109/ECTC.2015.7159711

    [128]

    Yoon J, Lee S M, Kang D, Meitl M A, Bower C A, Rogers J A 2015 Adv. Opt. Mater. 3 1313Google Scholar

    [129]

    Meitl M, Radauscher E, Bonafede S, Gomez D, Moore T, Prevatte C, Raymond B, Fisher B, Ghosal K, Fecioru A, Trindade A, Kneeburg D, Bower C 2016 SID Symp. Dig. Tech. Pap. 47 743Google Scholar

    [130]

    Bower C A, Meitl M A, Raymond B, Radauscher E, Cok R, Bonafede S, Gomez D, Moore T, Prevatte C, Fisher B, Rotzoll R, Melnik G A, Fecioru A, Trindade A J 2017 Photonics Res. 5 A23Google Scholar

    [131]

    Ye N, Muliuk G, Zhang J, Abbasi A, Trindade A, Bower C, Thourhout D, Roelkens G 2017 J. Light. Technol. PP 1Google Scholar

    [132]

    Gomez D, Ghosal K, Moore T, Meitl M A, Bonafede S, Prevatte C, Radauscher E, Trindade A J, Bower C A 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Orlando, USA, May 30–June 2, 2017 p1779 https://doi.org/10.1109/ectc.2017.318

    [133]

    Golda D, Bibl A 2016 U. S. Patent 15/052767 [2016-2-24]

    [134]

    Wu M H, Fang Y H, Chao C H 2015 U. S. Patent 14/954993 [2015-11-30]

    [135]

    Woodgate J M, Harrold J 2009 U. S. Patent 12/922841 [2009-10-01]

    [136]

    Woodgate J M, Harrold J 2009 Chinese Patent 200980139118.X [2009-10-01]

    [137]

    Woodgate J M, Harrold J 2011 U. S. Patent 13/880455 [2011-10-20]

    [138]

    Tomoda K 2009 U. S. Patent 12/647826 [2009-12-28]

    [139]

    Ezhilarasu G, Hanna A, Paranjpe A, Iyer S S 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) Las Vegas, USA, May 28–31, 2019 p1470 https:// doi.org/10.1109/ECTC.2019.00226

    [140]

    Chu C F, Lai F I, Chu J T, Yu CC, Lin C F, Kuo H C, Wang S C 2004 J. Appl. Phys. 95 3916Google Scholar

    [141]

    Ueda T, Ishida M, Yuri M 2011 Jpn. J. Appl. Phys. 50 041001Google Scholar

    [142]

    Sun Y J, Yu T J, Jia C Y, Chen Z Z, Tian P F, Kang X N, Lian G J, Huang S, Zhang G Y 2010 Chinese Phys. Lett. 27 127303Google Scholar

    [143]

    Sun Y J, Trieu S, Yu T J, Chen Z Z, Qi S L, Tian P F, Deng J J, Jin X M, Zhang G Y 2011 Semicond. Sci. Technol. 26 085008Google Scholar

    [144]

    Jung H D, Kim Y B, Kim J M 2016 Korean Patent 101810078 B1 [2016-12-22]

    [145]

    Jung H D, Lee M J, Kim Y B, Kim D H 2018 Korean Patent 102067972 B1 [2018-09-21]

    [146]

    陈志忠, 潘祚坚, 焦飞, 张树霖, 康香宁, 陈怡帆, 詹景麟, 陈毅勇, 聂靖昕, 沈波 2020 中国专利 202010366912.6 [2020-05-01]

    Chen Z Z, Pan Z J, Jiao F, Zhang S L, Kang X N, Chen Y F, Zhan J L, Chen Y Y, Nie J X, Shen B 2020 Chinese Patent 202010366912.6 (in Chinese)

    [147]

    陈志忠, 潘祚坚, 焦飞, 张树霖, 康香宁, 陈怡帆, 詹景麟, 陈毅勇, 聂靖昕, 沈波 2020 中国专利 202010528322.9 [2020-06-11]

    Chen Z Z, Pan Z J, Jiao F, Zhang S L, Kang X N, Chen Y F, Zhan J L, Chen Y Y, Nie J X, Shen B 2020 Chinese Patent 202010528322.9 [2020-06-11] (in Chinese)

    [148]

    Kokubo N, Tsunooka Y, Fujie F, Ohara J, Onda S, Yamada H, Shimizu M, Harada S, Tagawa M, Ujihara T 2019 Jpn. J. Appl. Phys. 58 SCCB06Google Scholar

    [149]

    Bagnall K R, Moore E A, Badescu S C, Zhang L, Wang E N 2017 Rev. Sci. Instrum. 88 113111Google Scholar

    [150]

    Yamamoto H, Agui K, Uchida Y, Mochizuki S, Uruma T, Satoh N, Hashizume T 2017 Jpn. J. Appl. Phys. 56 08LB07Google Scholar

    [151]

    Cunningham W, Gouldwell A, Lamb G, Roy P, Scott, Mathieson K, Bates R, Smith K, Cusco R, Watson I, Glaser M, Rahman M 2001 J. Phys. D 34 2748Google Scholar

    [152]

    Aid S R, Uneme T, Wakabayashi N, Yamazaki K, Uedono A, Matsumoto S 2017 Phys. Status Solidi A 214 1700225Google Scholar

    [153]

    何泽尚, 邢亮, 符鞠建, 刘刚 2018 中国专利 201810972545.7 [2018-08-24]

    He Z S, Xing L, Fu J J, Liu G 2018 Chinese Patent 201810972545.7 [2018-08-24] (in Chinese)

    [154]

    牛小龙, 翁守正, 徐相英, 孙龙洋, 姜晓飞 2017 中国专利 201711432965.8 [2017-12-26]

    Niu X L, Weng S Z, Xu X Y, Sun L Y, Jiang X F 2017 Chinese Patent 201711432965.8 [2017-12-26] (in Chinese)

    [155]

    [赵承潭 2018 中国专利 201910015236.5 [2019-01-08]

    Zhao C T 2019 Chinese Patent 201910015236.5 [2019-01-08] (in Chinese)

    [156]

    朱浩, 刘国旭 2018 中国专利 201810660970.2 [2018-06-25]

    Zhu H, Liu G X 2018 Chinese Patent 201810660970.2 [2018-06-25] (in Chinese)

    [157]

    宋晓欣, 吕志军, 姚琪, 张锋, 刘文渠, 董立文, 崔钊, 孟德天, 王利波 2019 中国专利 201911001793.8 [2019-10-21]

    Song X X, Lv Z J, Yao Q, Zhang F, Liu W Q, Dong L W, Cui Z, Meng D T, Wang L B 2019 Chinese Patent 201911001793.8 [2019-10-21] (in Chinese)

    [158]

    徐尚君, 王鸣昕, 黄洪涛, 朱景辉, 高威 2019 中国专利 201910885722.2 [2019-09-19]

    Xu S J, Wang M X, Huang H T, Zhu J H, Gao W 2019 Chinese Patent 201910885722.2 [2019-09-19] (in Chinese)

    [159]

    Zheng L L, Guo Z Q, Yan W, Lin Y, Lu Y J, Kuo H C, Chen Z, Zhu L H, Wu T Z, Gao Y L 2018 IEEE Access 6 51329Google Scholar

  • 图 1  (a)采用不同的侧壁钝化和刻蚀开孔方法的micro-LED电致发光图; (b)分别经过ALD和PECVD钝化处理的20 μm × 20 μm的micro-LED在不同电流密度条件下的光输出功率[37]; (c)经过ICP刻蚀工艺制备的不同尺寸micro-LED的EQE与电流密度的关系; (d) 经过NBE刻蚀工艺制备的不同尺寸micro-LED的EQE与电流密度的关系[43]

    Fig. 1.  (a) Electroluminescence images of the micro-LEDs with different sidewall passivation and etch methods at 1 A/cm2; (b) light output power characteristics of ALD and PECVD passivation methods at different current density for 20 μm × 20 μm micro-LEDs[37]; (c) EQE as a function of current density of micro-LEDs with different sizes fabricated by the ICP process; (d) EQE as a function of current density of micro-LEDs with different sizes fabricated by the NBE process[43].

    图 2  在具有和不具有单晶石墨烯/SiO2缓冲层的Si(100)上分别生长单晶GaN薄膜的示意图 (a)在Si(100)上直接生长GaN/AlN, 氮化物在两种不同取向的台面上成核; (b)Si(100)的表面结构; (c)NH3预处理后转移的石墨烯; (d)石墨烯上的AlN成核岛; (e)在AlN成核层上生长的条状GaN; (f)在具有单晶石墨烯/ SiO2缓冲层的Si(100)衬底上生长的单畴GaN薄膜[52]

    Fig. 2.  Schematic diagram of the epitaxy of single-crystalline GaN film on Si(100) without and with single-crystalline-graphene/SiO2 interlayers: (a) GaN/AlN directly grown on Si(100), Nitrides nucleate on neighboring terraces with two orientations; (b) surface construction of Si(100); (c) transferred graphene after NH3 pretreatment; (d) AlN nucleation islands on graphene; (e) GaN strips on the AlN nucleation layer; (f) single-domain GaN film on Si(100) substrate with single-crystalline-graphene/SiO2 interlayers[52].

    图 3  (a)常规的InzGa1–zN-GaN量子阱、两层交错的InxGa1–xN/InyGa1–yN量子阱和三层交错的InyGa1–yN/InxGa1–xN/Iny Ga1–yN量子阱的示意图; (b)基于常规InGaN量子阱和三层交错的InGaN量子阱的LED在波长为520—525 nm范围内光输出功率与电流密度的关系, 插图为三层交错的InGaN量子阱的能带示意图[69]

    Fig. 3.  (a)Schematics of the conventional InzGa1–zN-GaN quantum well (QW), two-layer staggered InxGa11–xN/InyGa1–yN QW and three-layer staggered InyGa1–yN/InxGa1–xN/Iny Ga1–yN QW structures; (b)light output power vs current density for conventional InGaN QW and three-layer staggered InGaN QW LEDs at λ~520–525 nm, with the band lineups schematic of three-layer staggered InGaN QW[69].

    图 4  含有AlyGa1–yN薄插入层的量子阱的能带图、载流子分布和复合速率 (a)量子阱中Al组分摩尔系数y = 0; (b)量子阱中Al组分摩尔系数y = 0.15; (c)量子阱中Al组分摩尔系数y = 0.3; (d)量子阱中Al组分摩尔系数y = 0; (e)量子阱中Al组分摩尔系数y = 0.15; (f)量子阱中Al组分摩尔系数y = 0.3; (a)—(c)和(d)—(f)的工作电流密度分别设定为2 A/cm2和30 A/cm2[76]

    Fig. 4.  Band diagrams, the corresponding carrier distribution, and the recombination rate of multi-quantum well (MQW) structures with thin AlyGa1–yN interlayers. (a) and (d) show those of the MQWs whose AlN mole fractions were set to y = 0; (b) and (e) show those of the MQWs whose AlN mole fractions were set to y = 0.15; (c) and (f) show those of the MQWs whose AlN mole fractions were set to y = 0.30. The operation current densities in (a)–(c) and (d)–(f) were set to 2 A/cm2 and 30 A/cm2, respectively[76].

    图 5  (a)在图形化蓝宝石衬底上生长的半极性GaN示意图; (b)通过取向控制外延在图形化蓝宝石衬底上生长的(20-21) GaN截面的扫描电子显微镜图像; (c) c面和半极性面micro-LED归一化EQE的实验数据和仿真曲线; (d)当电流密度在1—200 A/cm2范围内变化时c面和半极性面micro-LED的峰值波长[86]

    Fig. 5.  (a)Schematic diagram of the semipolar GaN grown on a patterned sapphire substrate; (b) cross-sectional scanning electron microscope (SEM) image of (20-21) GaN grown on a patterned sapphire substrate by orientation-controlled epitaxy; (c) experimental data and simulation curves for normalized external quantum efficiency of c-plane and semipolar micro-LEDs; (d)peak wavelengths of c-plane and semipolar micro-LEDs in range 1 to 200 A/cm2 current density[86].

    图 6  典型的Micro-LED发光波长在外延片上的分布

    Fig. 6.  Typical distribution of emission wavelengths on wafer of micro-LED.

    图 7  (a)基于200 mm尺寸硅衬底的GaN LED外延片光致发光的伪色彩图; (b)不同发光波长的芯片数量统计[97]

    Fig. 7.  (a) The pseudo-color image of photoluminescence mapping of the 200 mm GaN-on-Si LED epiwafer; (b) statistics on the number of chips with different emission wavelengths[97].

    图 8  (a)分立RGB排列法; (b) UV/Blue LED激发量子点法

    Fig. 8.  (a) Assembling RGB individual LEDs; (b) exciting quantum dots by UV/Blue LED.

    图 9  RGB LED的制备过程示意图: (a)使用选择性区域生长制备蓝光和绿光双色LED; (b)使用粘合剂集成红光LED的过程; (c)最终器件的俯视图和横截面图, RGB LED以蓝光、绿光、红光和白光模式(从上到下)依次显示的显微图像[107]

    Fig. 9.  Schematic of the fabrication process of the hybrid RGB LEDs: (a) The fabrication process of the blue/green dual-color LEDs using selective area growth; (b) the process for the formation of the red pixels using adhesive bonding; (c) top and cross-sectional views of the final device, microscopic images of the hybrid RGB LEDs in (top to bottom) blue, green, red and white color modes[107].

    图 10  (a)基于量子点的全彩色显示micro-LED的制备流程[10]; (b)光刻胶模具的光学显微镜图像, 其尺寸为35 μm × 35 μm、间距约为40 μm, 以及光刻胶模具的激光扫描仪显微镜图像, 其模板高度为11.46 μm[111]; (c)荧光显微镜下使用最新的超微喷墨印刷技术在玻璃上用红色量子点印刷的图案 (插图描绘了最小线宽) 以及沉积的量子点的原子力显微镜图像[17]

    Fig. 10.  (a)The process flow of the full-color emission of quantum-dot-based micro-LED display[10]; (b) optical microscopy image of photoresist square windows with the pixel size of 35 μm × 35 μm, where the pitch is about 40 μm. And the laser scanner microscope image of the photoresist square wall, where the height of the wall is 11.46 μm[111]; (c) fluorescence microscopy image of patterns printed by red quantum dots on a glass by using the latest SIJ printing system (the inset depicts minimum linewidth) and atomic force microscopy (AFM) image of deposited quantum dots[17].

    图 11  SEM鸟瞰图和He-Cd激光器激发的不同直径InGaN/GaN纳米柱的发射图像: (a) 143 nm; (b) 159 nm; (c) 175 nm; (d) 196 nm; (e) 237 nm; (f) 270 nm[116]; AlN/Si纳米模板上的InGaN纳米柱LED: (g) InGaN纳米柱LED示意图; (h)纳米柱LED的SEM俯视图; (i)纳米柱LED的SEM鸟瞰图[117]

    Fig. 11.  Bird’s-eye-view SEM and emission images excited by He–Cd laser from InGaN/GaN nanocolumns: (a) 143 nm; (b) 159 nm;(c) 175 nm; (d) 196 nm; (e) 237 nm; (f) 270 nm[116]; InGaN nanocolumn LEDs on the AlN/Si nanotemplate: (g) schematic of the InGaN nanocolumn LEDs; (h)top-view SEM image of the obtained nanocolumn LEDs; (i) bird’s-eye-view SEM image of the obtained nanocolumn LEDs[117].

    图 12  (a)转移印模从装有密集微器件的原晶圆上获取微器件阵列; (b)将分散的微器件转移到接收基板上; (c)转移印模的横截面示意图; (d)有效面积为100 mm × 50 mm的转移印模阵列照片, 插图为弹性印模表面的电子显微镜图像[130]

    Fig. 12.  (a) Transfer stamp retrieves an array of micro-devices from a native wafer with densely packed micro-devices; (b) transfer the dispersed micro-devices onto the receiving substrate; (c) a transfer stamp is illustrated in cross section; (d) a photograph of a transfer stamp with a 100 mm × 50 mm active area, the inset shows an electron micrograph of the surface relief on the elastomer stamp[130].

    图 13  激光剥离工艺的示意图和氮化镓/蓝宝石界面的能带图[139]

    Fig. 13.  Schematic of the laser lift-off process along with the band diagram of the GaN/sapphire interface[139].

    图 14  Micro-LED芯片共焦显微拉曼结合PL检测系统示意图[146]

    Fig. 14.  Schematic diagram of confocal micro Raman combined PL inspection system of micro-LED[146].

    图 15  (a) I = 10 μA时, 单个micro-LED芯片对应的亮度的伪彩色图和3D分布; (b) I = 25 μA时, 单个micro-LED芯片对应的亮度的伪彩色图和3D分布; (c) I = 50 μA时, 单个micro-LED芯片对应的亮度的伪彩色图和3D分布; (d) micro-LED阵列中的部分芯片; (e) 这些芯片在不同电压下的平均亮度[159]

    Fig. 15.  (a) The pseudo color map and 3D distribution of the luminance of the single micro-LED chip, I = 10 μA; (b) The pseudo color map and 3D distribution of the luminance of the single micro-LED chip, I = 25 μA; (c) The pseudo color map and 3D distribution of the luminance of the single micro-LED chip, I =, 50 μA; (d) the certain chips on the micro-LED array; (e) the average luminance of these chips under different voltages[159].

    表 1  2001—2020年micro-LED显示部分进展

    Table 1.  Some results of micro-LED display from 2001 to 2020

    YearSubstratePixel size/μmPixel pitch/μmArrayWavelengthGroupReference
    2001Sapphire125010 × 10BlueJiang H X, et al.[5]
    2004Sapphire203064 × 64UVDawson M D, et al.[6]
    2011Sapphire1215640 × 480Green/BlueJiang H X, et al.[13]
    2013Sapphire507060 × 60RGB/UVLiu Z J, et al.[7]
    2014Sapphire15~20256 × 192BlueLau K M, et al.[8]
    2014Si4510010 × 10BlueDawson M D, et al.[14]
    2015Sapphire3540128 × 128RGBKuo H C, et al.[10]
    2017Si23BlueTemplier F, et al.[11]
    2017Sapphire510873 × 500Green/BlueTemplier F, et al.[15]
    2019Si4064 × 36Blue Lau K M, et al.[16]
    2019Sapphire3 × 10RGBKuo H C, et al.[17]
    2020Sapphire3.65.6GreenWang T, et al.[12]
    下载: 导出CSV
  • [1]

    Nakamura S, Mukai T, Senoh M 1994 Appl. Phys. Lett. 64 1687Google Scholar

    [2]

    Fan Z Y, Lin J Y, Jiang H X 2008 J. Phys. D 4145 94001Google Scholar

    [3]

    McCall S L, Levi A F J, Slusher R E, Pearton S J, Logan R A 1992 Appl. Phys. Lett. 60 289Google Scholar

    [4]

    Jin S X, Li J, Li J Z, Lin J Y, Jiang H X 2000 Appl. Phys. Lett. 76 631Google Scholar

    [5]

    Jiang H X, Jin S X, Li J, Shakya J, Lin J Y 2001 Appl. Phys. Lett. 78 1303Google Scholar

    [6]

    Jeon C W, Choi H W, Gu E, Dawson M D 2004 IEEE Photon. Technol. Lett. 16 2421Google Scholar

    [7]

    Liu Z J, Chong W C, Wong K M, Lau K M 2013 J. Disp. Technol. 9 678Google Scholar

    [8]

    Chong W C, Cho W K, Liu Z J, Wang C H, Lau K M 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS) La Jolla, USA, Oct 19–22, 2014 p1 https://doi.org/10.1109/CSICS.2014.6978524

    [9]

    Liu Z J, Zhang K, Liu Y B, Yan S W, Kwok H S, Deen J, Sun X W 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, Dec 1–5, 2018 p38.1.1 https://doi.org/10.1109/IEDM.2018.8614692

    [10]

    Han H V, Lin H Y, Lin C C, Chong W C, Li J R, Chen K J, Yu P, Chen T M, Chen H M, Lau K M, Kuo H C 2015 Opt. Express 23 32504Google Scholar

    [11]

    Templier F, Benaïssa L, Aventurier B, Nardo C D, Charles M, Daami A, Henry F, Dupré L 2017 SID Symp. Dig. Tech. Pap. 48 268Google Scholar

    [12]

    Bai J, Cai Y, Feng P, Fletcher P, Zhao X, Zhu C, Wang T 2020 ACS Photon. 7 411Google Scholar

    [13]

    Day J, Li J, Lie D Y C, Bradford C, Lin J Y, Jiang H X 2011 Appl. Phys. Lett. 99 031116Google Scholar

    [14]

    Tian P F, McKendry J J D, Gong Z, Zhang S L, Watson S, Zhu D D, Watson I M, Gu E D, Kelly A E, Humphreys C J, Dawson M D 2014 J. Appl. Phys. 115 033112Google Scholar

    [15]

    Ludovic D, Marjorie M, Valentin V, Bernard A, Franck H, François O, Sauveur T, Anis D, Templier F 2017 Proc. SPIE 10104 1010422Google Scholar

    [16]

    Zhang X, Li P A, Zou X B, Jiang J M, Yuen S H, Tang C W, Lau K M 2019 IEEE Photon. Technol. Lett. 31 865Google Scholar

    [17]

    Huang Chen S W, Shen C C, Wu T, Liao Z Y, Chen L F, Zhou J R, Lee C F, Lin C H, Lin C C, Sher C W, Lee P T, Tzou A J, Chen Z, Kuo H C 2019 Photonics Res. 7 416Google Scholar

    [18]

    Jiang H X, Lin J Y 2013 Opt. Express 21 A475Google Scholar

    [19]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Huang Chen S W, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. 8 1557Google Scholar

    [20]

    Ding K, Avrutin V, Izyumskaya N, Özgür Ü, Morkoç H 2019 Appl. Sci. 9 1206Google Scholar

    [21]

    Wierer J J, Tansu N 2019 Laser Photonics Rev. 13 1900141Google Scholar

    [22]

    Wasisto H S, Prades J D, Gülink J, Waag A 2019 Appl. Phys. Rev. 6 041315Google Scholar

    [23]

    Lee H E, Shin J H, Park J H, Hong S K, Park S H, Lee S H, Lee J H, Kang I S, Lee K J 2019 Adv. Funct. Mater. 29 1808075Google Scholar

    [24]

    Wong M S, Nakamura S, DenBaars S 2020 ECS J. Solid State Sci. Technol. 9 015012Google Scholar

    [25]

    Zhou X J, Tian P F, Sher C W, Wu J, Liu H Z, Liu R, Kuo H C 2020 Prog. Quantum. Electron. 71 100263Google Scholar

    [26]

    Liu Z J, Lin C H, Hyun B R, Sher C W, Lv Z J, Luo B Q, Jiang F L, Wu T, Ho C H, Kuo H C, He J H 2020 Light Sci. Appl. 9 83Google Scholar

    [27]

    Karpov S 2015 Opt. Quantum Electron 47 1293Google Scholar

    [28]

    Zhan J L, Chen Z Z, Jiao Q, Feng Y L, Li C C, Chen Y F, Chen Y Y, Jiao F, Kang X N, Li S F, Wang Q, Yu T J, Zhang G Y, Shen B 2018 Opt. Express 26 5265Google Scholar

    [29]

    Li C C, Zhan J L, Chen Z Z, Jiao F, Chen Y F, Chen Y Y, Nie J X, Kang X N, Li S F, Wang Q, Zhang G Y, Shen B 2019 Opt. Express 27 A1146Google Scholar

    [30]

    Hwang D, Mughal A, Pynn C D, Nakamura S, DenBaars S P 2017 Appl. Phys. Express 10 032101Google Scholar

    [31]

    Tian P F, McKendry J J D, Gong Z, Guilhabert B, Watson I M, Gu E D, Chen Z Z, Zhang G Y, Dawson M D 2012 Appl. Phys. Lett. 101 231110Google Scholar

    [32]

    Meyaard D S, Shan Q, Cho J, Fred Schubert E, Han S H, Kim M H, Sone C, Jae Oh S, Kyu Kim J 2012 Appl. Phys. Lett. 100 081106Google Scholar

    [33]

    Konoplev S S, Bulashevich K A, Karpov S Y 2018 Phys. Status Solidi A 215 1700508Google Scholar

    [34]

    Kou J Q, Shen C C, Shao H, Che J M, Hou X, Chu C S, Tian K K, Zhang Y H, Zhang Z H, Kuo H C 2019 Opt. Express 27 A643Google Scholar

    [35]

    Zhao C, Ng T K, Prabaswara A, Conroy M, Jahangir S, Frost T, O'Connell J, Holmes J D, Parbrook P J, Bhattacharya P, Ooi B S 2015 Nanoscale 7 16658Google Scholar

    [36]

    Zuo P, Zhao B, Yan S, Yue G, Yang H J, Li Y F, Wu H Y, Jiang Y, Jia H Q, Zhou J M, Chen H 2016 Opt. Quantum Electron 48 288Google Scholar

    [37]

    Wong M S, Hwang D, Alhassan A I, Lee C, Ley R, Nakamura S, DenBaars S P 2018 Opt. Express 26 21324Google Scholar

    [38]

    Yang C M, Kim D S, Park Y S, Lee J H, Lee Y S, Lee J H 2012 Opt. Photonics J. 02 185Google Scholar

    [39]

    Wong M S, Lee C, Myers D J, Hwang D, Kearns J A, Li T, Speck J S, Nakamura S, DenBaars S P 2019 Appl. Phys. Express 12 097004Google Scholar

    [40]

    Chen W J, Wen X M, Latzel M, Heilmann M, Yang J F, Dai X, Huang S J, Shrestha S, Patterson R, Christiansen S, Conibeer G 2016 ACS Appl. Mater. Interfaces 8 31887Google Scholar

    [41]

    Zhang Y Y, Guo E Q, Li Z, Wei T B, Li J, Yi X Y, Wang G H 2012 IEEE Photon. Technol. Lett. 24 243Google Scholar

    [42]

    Yang Y, Cao X A 2009 J. Vac. Sci. Technol. B 27 2337Google Scholar

    [43]

    Zhu J, Takahashi T, Ohori D, Endo K, Samukawa S, Shimizu M, Wang X L 2019 Phys. Status Solidi A 216 1900380Google Scholar

    [44]

    Usui A, Sunakawa H, Sakai A, Yamaguchi A 1997 Jpn. J. Appl. Phys. 36 7BGoogle Scholar

    [45]

    Nakamura S 1991 Jpn. J. Appl. Phys. 30 L1705Google Scholar

    [46]

    Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353Google Scholar

    [47]

    Ishikawa H, Zhao G-Y, Nakada N, Egawa T, Jimbo T, Umeno M 1999 Jpn. J. Appl. Phys. 38 L492Google Scholar

    [48]

    Feltin E, Dalmasso S, Mierry P D, Beaumont B, Lahrèche H, Bouillé A, Haas H, Leroux M, Gibart P 2001 Jpn. J. Appl. Phys. 40 L738Google Scholar

    [49]

    Kim M H, Do Y G, Kang H C, Noh D Y, Park S J 2001 Appl. Phys. Lett. 79 2713Google Scholar

    [50]

    Cheng J P, Yang X L, Sang L, Guo L, Hu A Q, Xu F J, Tang N, Wang X Q, Shen B 2015 Appl. Phys. Lett. 106 142106Google Scholar

    [51]

    张洁 2019 博士学位论文 (北京: 北京大学)

    Zhang J 2019 Ph. D. Dissertation (Beijing: Peking University) (in Chinese)

    [52]

    Feng Y X, Yang X L, Zhang Z H, Kang D, Zhang J, Liu K H, Li X Z, Shen J F, Liu F, Wang T, Ji P F, Xu F J, Tang N, Yu T J, Wang X Q, Yu D P, Ge W K, Shen B 2019 Adv. Funct. Mater. 29 1905056Google Scholar

    [53]

    Cho C Y, Kwon M K, Park I K, Hong S H, Kim J J, Park S E, Kim S T, Park S J 2011 Opt. Express 19 A943Google Scholar

    [54]

    Matsuoka R, Okimoto T, Nishino K, Naoi Y, Sakai S 2009 J. Cryst. Growth 311 2847Google Scholar

    [55]

    Park J, Moon D, Park S, Park S H, Yoon E 2012 Jpn. J. Appl. Phys. 51 025501Google Scholar

    [56]

    Xu Y, Cao B, He S Y, Qi L, Li Z Y, Cai D M, Zhang Y M, Ren G Q, Wang J F, Wang C H, Xu K 2017 Appl. Phys. Lett. 111 102105Google Scholar

    [57]

    Xu Y, Su X J, Cao B, Li Z Y, Liu Y, Cai D M, Zhang Y M, Wang J F, Wang C H, Xu K 2019 CrystEngComm 21 902Google Scholar

    [58]

    Chung K, Lee K, Tchoe Y, Oh H, Park J, Hyun J K, Yi G C 2019 Nano Energy 60 82Google Scholar

    [59]

    Tadatomo K, Okagawa H, Ohuchi Y, Tsunekawa T, Jyouichi T, Imada Y, Kato M, Kudo H, Taguchi T 2001 Phys. Status Solidi A 188 121Google Scholar

    [60]

    江风益, 刘军林, 王立, 熊传兵, 方文卿, 莫春兰, 汤英文, 王光绪, 徐龙权, 丁杰, 王小兰, 全知觉, 张建立, 张萌, 潘拴, 郑畅达 2015 中国科学: 物理学 力学 天文学 45 067302Google Scholar

    Jiang F Y, Liu J L, Wang L, Xiong C B, Fang W Q, Mo C L, Tang Y W, Wang G X, Xu L Q, Ding J, Wang X L, Quan Z J, Zhang J L, Zhang M, Pan S, Zheng C D 2015 Sci. Sin-Phys. Mech. Astron. 45 067302Google Scholar

    [61]

    Sun Y J, Yu T J, Dai J H, Wang N H, Luo R H, Liang Z W, Zhang N, Li C Y, Kang X N, Zhang G Y 2014 CrystEngComm 16 5458Google Scholar

    [62]

    Gao H Y, Yan F W, Zhang Y, Li J M, Zeng Y P, Wang G H 2008 J. Appl. Phys. 103 014314Google Scholar

    [63]

    Huang H W, Lin C H, Yu C C, Lee B D, Chiu C H, Lai C F, Kuo H C, Leung K M, Lu T C, Wang S C 2008 Nanotechnology 19 185301Google Scholar

    [64]

    Chen J J, Su Y K, Lin C L, Chen S M, Li W L, Kao C C 2008 IEEE Photon. Technol. Lett. 20 1193Google Scholar

    [65]

    Chen Y F, Chen Z Z, Li J Z, Chen Y Y, Li C C, Zhan J L, Yu T J, Kang X N, Jiao F, Li S F, Zhang G Y, Shen B 2018 CrystEngComm 20 6811Google Scholar

    [66]

    Li J Z, Chen Z Z, Jiao Q Q, Feng Y L, Jiang S, Chen Y F, Yu T J, Li S F, Zhang G Y 2015 CrystEngComm 17 4469Google Scholar

    [67]

    Fiorentini V, Bernardini F, Della Sala F, Di Carlo A, Lugli P 1999 Phys. Rev. B 60 8849Google Scholar

    [68]

    Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B, Eastman L 2002 J. Phys. Condens. Matter 14 3399Google Scholar

    [69]

    Zhao H P, Liu G Y, Zhang J, Poplawsky J D, Dierolf V, Tansu N 2011 Opt. Express 19 A991Google Scholar

    [70]

    Zhao H P, Arif R A, Ee Y K, Tansu N 2009 IEEE J. Quantum Electron 15 1104Google Scholar

    [71]

    Zhao H P, Liu G Y, Li X, Arif R, Huang G S, Poplawsky J D, Penn S, Dierolf V, Tansu N 2009 IET Optoelectron. 3 283Google Scholar

    [72]

    Tsai M C, Yen S H, Kuo Y K 2011 Appl. Phys. A 104 621Google Scholar

    [73]

    Arif R A, Ee Y K, Tansu N 2007 Appl. Phys. Lett. 91 091110Google Scholar

    [74]

    Yang Z W, Li R, Wei Q Y, Yu T, Zhang Y Z, Chen W H, Hu X D 2009 Appl. Phys. Lett. 94 061120Google Scholar

    [75]

    Shioda T, Yoshida H, Tachibana K, Sugiyama N, Nunoue S 2012 Phys. Status Solidi A 209 473Google Scholar

    [76]

    Kimura S, Yoshida H, Uesugi K, Ito T, Okada A, Nunoue S 2016 J. Appl. Phys. 120 113104Google Scholar

    [77]

    Alhassan A I, Farrell R M, Saifaddin B, Mughal A, Wu F, DenBaars S P, Nakamura S, Speck J S 2016 Opt. Express 24 17868Google Scholar

    [78]

    Al Muyeed S A, Sun W, Wei X, Song R, Koleske D D, Tansu N, Wierer J J 2017 AIP Adv. 7 105312Google Scholar

    [79]

    Hwang J I, Hashimoto R, Saito S, Nunoue S 2014 Appl. Phys. Expres 7 071003Google Scholar

    [80]

    Sun W, Al Muyeed S A, Song R, Wierer J J, Tansu N 2018 Appl. Phys. Lett. 112 201106Google Scholar

    [81]

    Zhao H P, Liu G Y, Tansu N 2010 Appl. Phys. Lett. 97 131114Google Scholar

    [82]

    Wang T 2016 Semicond. Sci. Technol. 31 093003Google Scholar

    [83]

    Poyiatzis N, Athanasiou M, Bai J, Gong Y, Wang T 2019 Sci. Rep. 9 1383Google Scholar

    [84]

    Bai J, Xu B, Guzman F G, Xing K, Gong Y, Hou Y, Wang T 2015 Appl. Phys. Lett. 107 261103Google Scholar

    [85]

    Li H J, Wong M S, Khoury M, Bonef B, Zhang H J, Chow Y C, Li P P, Kearns J, Taylor A A, Mierry P D, Hassan Z, Nakamura S, DenBaars S P 2019 Opt. Express 27 24154Google Scholar

    [86]

    Huang Chen S W, Huang Y M, Singh K J, Hsu Y C, Liou F J, Song J, Choi J, Lee P T, Lin C C, Chen Z, Han J, Wu T Z, Kuo H C 2020 Photonics Res. 8 630Google Scholar

    [87]

    Strittmatter A, Northrup J E, Johnson N M, Kisin M V, Spiberg P, El-Ghoroury H, Usikov A, Syrkin A 2011 Phys. Status Solidi B 248 561Google Scholar

    [88]

    Zhao Y J, Yan Q M, Huang C Y, Huang S C, Hsu P S, Tanaka S, Pan C C, Kawaguchi Y, Fujito K, Van De Walle C G, Speck J S, DenBaars S P, Nakamura S, Feezell D 2012 Appl. Phys. Lett. 100 201108Google Scholar

    [89]

    Zhang Y, Bai J, Hou Y, Smith R M, Yu X, Gong Y, Wang T 2016 AIP Adv. 6 025201Google Scholar

    [90]

    Monavarian M, Rashidi A, Feezell D 2019 Phys. Status Solidi A 216 1800628Google Scholar

    [91]

    Song J, Choi J, Zhang C, Deng Z, Xie Y J, Han J 2019 ACS Appl. Mater. Interfaces 11 33140Google Scholar

    [92]

    Song J, Han J 2020 Phys. Status Solidi B 257 1900565Google Scholar

    [93]

    Beckers A, Fahle D, Mauder C, Kruecken T, Boyd A R, Heuken M 2018 SID Symp. Dig. Tech. Pap. 49 601Google Scholar

    [94]

    Paranjpe A, Montgomery J, Lee S M, Morath C 2018 SID Symp. Dig. Tech. Pap. 49 597Google Scholar

    [95]

    Armour E, Lu F, Belousov M, Lee D, Quinn W 2009 Semicond. Today 4 82

    [96]

    Liu J L, Zhang J L, Mao Q H, Wu X M, Jiang F Y 2013 CrystEngComm 15 3372Google Scholar

    [97]

    Nishikawa A, Loesing A, Slischka B 2019 SID Symp. Dig. Tech. Pap. 50 591Google Scholar

    [98]

    Aida H, Takeda H, Aota N, Koyama K 2012 Jpn. J. Appl. Phys. 51 016504Google Scholar

    [99]

    Aida H, Aota N, Takeda H, Koyama K 2012 J. Cryst. Growth 361 135Google Scholar

    [100]

    Ohno Y, Kuzuhara M 2001 IEEE Trans. Electron Devices 48 517Google Scholar

    [101]

    Nishikawa A, Groh L, Solari W, Lutgen S 2013 Jpn. J. Appl. Phys. 52 08JB25Google Scholar

    [102]

    Auf der Maur M, Pecchia A, Penazzi G, Rodrigues W, Di Carlo A 2016 Phys. Rev. Lett. 116 027401Google Scholar

    [103]

    Park I K, Kim J Y, Kwon M K, Cho C Y, Lim J H, Park S J 2008 Appl. Phys. Lett. 92 091110Google Scholar

    [104]

    El-Ghoroury H, Yeh M, Chen J C, Li X, Chuang C L 2016 AIP Adv. 6 075316Google Scholar

    [105]

    Boroditsky M, Gontijo I, Jackson M, Vrijen R, Yablonovitch E, Krauss T, Cheng C C, Scherer A, Bhat R, Krames M 2000 J. Appl. Phys. 87 3497Google Scholar

    [106]

    Kang C M, Kong D J, Shim J P, Kim S, Choi S B, Lee J Y, Min J H, Seo D J, Choi S Y, Lee D S 2017 Opt. Express 25 2489Google Scholar

    [107]

    Kang C M, Lee J Y, Kong D J, Shim J P, Kim S, Mun S H, Choi S Y, Park M D, Kim J, Lee D S 2018 ACS Photon. 5 4413Google Scholar

    [108]

    Lee J, Sundar V C, Heine J R, Bawendi M G, Jensen K F 2000 Adv. Mater. 12 1102Google Scholar

    [109]

    Gong Z, Gu E D, Jin S R, Massoubre D, Guilhabert B, Zhang H X, Dawson M D, Poher V, Kennedy G T, French P M W, Neil M A A 2008 J. Phys. D 41 094002Google Scholar

    [110]

    Lee C T, Cheng C J, Lee H Y, Chu Y C, Fang Y H, Chao C H, Wu M H 2015 IEEE Photon. Technol. Lett. 27 2296Google Scholar

    [111]

    Lin H Y, Sher C W, Hsieh D H, Chen X Y, Chen H M P, Chen T M, Lau K M, Chen C H, Lin C C, Kuo H C 2017 Photonics Res. 5 411Google Scholar

    [112]

    Lin C H, Chiang H C, Wang Y T, Yao Y F, Chen C C, Tse W, Wu R N, Chang W Y, Kuo Y, Kiang Y W, Yang C 2018 Opt. Express 26 23629Google Scholar

    [113]

    Chang W Y, Kuo Y, Kiang Y W, Yang C C 2019 Opt. Express 27 A629Google Scholar

    [114]

    Wang Y T, Liu C W, Chen P Y, Wu R N, Ni C C, Cai C J, Kiang Y W, Yang C C 2019 Opt. Lett. 44 5691Google Scholar

    [115]

    Guo W, Zhang M, Banerjee A, Bhattacharya P 2010 Nano Lett. 10 3355Google Scholar

    [116]

    Sekiguchi H, Kishino K, Kikuchi A 2010 Appl. Phys. Lett. 96 231104Google Scholar

    [117]

    Yamano K, Kishino K 2018 Appl. Phys. Lett. 112 091105Google Scholar

    [118]

    Hong Y J, Lee C H, Yoon A, Kim M, Seong H K, Chung H J, Sone C, Park Y J, Yi G C 2011 Adv. Mater. 23 3284Google Scholar

    [119]

    Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019Google Scholar

    [120]

    Lee M L, Yeh Y H, Tu S J, Chen P C, Lai W C, Sheu J K 2015 Opt. Express 23 A401Google Scholar

    [121]

    Funato M, Hayashi K, Ueda M, Kawakami Y, Narukawa Y, Mukai T 2008 Appl. Phys. Lett. 93 021126Google Scholar

    [122]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2005 Nat. Mater. 5 33Google Scholar

    [123]

    Park S I, Xiong Y J, Kim R H, Elvikis P, Meitl M, Kim D H, Wu J, Yoon J, Yu C J, Liu Z J, Huang Y G, Hwang K C, Ferreira P, Li X L, Choquette K, Rogers J A 2009 Science 325 977Google Scholar

    [124]

    Zhang J, De Groote A, Abbasi A, Loi R, O'Callaghan J, Corbett B, Trindade A J, Bower C A, Roelkens G 2017 Opt. Express 25 14290Google Scholar

    [125]

    Corbett B, Loi R, Zhou W, Liu D, Ma Z 2017 Prog. Quantum. Electron. 52 1Google Scholar

    [126]

    De Groote A, Cardile P, Subramanian A Z, Fecioru A M, Bower C, Delbeke D, Baets R, Roelkens G 2016 Opt. Express 24 13754Google Scholar

    [127]

    Bower C A, Meitl M A, Bonafede S, Gomez D, Fecioru A, Kneeburg D 2015 IEEE 65th Electronic Components and Technology Conference (ECTC) San Diego, USA, May 26–29, 2015 p963 https://doi.org/10.1109/ECTC.2015.7159711

    [128]

    Yoon J, Lee S M, Kang D, Meitl M A, Bower C A, Rogers J A 2015 Adv. Opt. Mater. 3 1313Google Scholar

    [129]

    Meitl M, Radauscher E, Bonafede S, Gomez D, Moore T, Prevatte C, Raymond B, Fisher B, Ghosal K, Fecioru A, Trindade A, Kneeburg D, Bower C 2016 SID Symp. Dig. Tech. Pap. 47 743Google Scholar

    [130]

    Bower C A, Meitl M A, Raymond B, Radauscher E, Cok R, Bonafede S, Gomez D, Moore T, Prevatte C, Fisher B, Rotzoll R, Melnik G A, Fecioru A, Trindade A J 2017 Photonics Res. 5 A23Google Scholar

    [131]

    Ye N, Muliuk G, Zhang J, Abbasi A, Trindade A, Bower C, Thourhout D, Roelkens G 2017 J. Light. Technol. PP 1Google Scholar

    [132]

    Gomez D, Ghosal K, Moore T, Meitl M A, Bonafede S, Prevatte C, Radauscher E, Trindade A J, Bower C A 2017 IEEE 67th Electronic Components and Technology Conference (ECTC) Orlando, USA, May 30–June 2, 2017 p1779 https://doi.org/10.1109/ectc.2017.318

    [133]

    Golda D, Bibl A 2016 U. S. Patent 15/052767 [2016-2-24]

    [134]

    Wu M H, Fang Y H, Chao C H 2015 U. S. Patent 14/954993 [2015-11-30]

    [135]

    Woodgate J M, Harrold J 2009 U. S. Patent 12/922841 [2009-10-01]

    [136]

    Woodgate J M, Harrold J 2009 Chinese Patent 200980139118.X [2009-10-01]

    [137]

    Woodgate J M, Harrold J 2011 U. S. Patent 13/880455 [2011-10-20]

    [138]

    Tomoda K 2009 U. S. Patent 12/647826 [2009-12-28]

    [139]

    Ezhilarasu G, Hanna A, Paranjpe A, Iyer S S 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) Las Vegas, USA, May 28–31, 2019 p1470 https:// doi.org/10.1109/ECTC.2019.00226

    [140]

    Chu C F, Lai F I, Chu J T, Yu CC, Lin C F, Kuo H C, Wang S C 2004 J. Appl. Phys. 95 3916Google Scholar

    [141]

    Ueda T, Ishida M, Yuri M 2011 Jpn. J. Appl. Phys. 50 041001Google Scholar

    [142]

    Sun Y J, Yu T J, Jia C Y, Chen Z Z, Tian P F, Kang X N, Lian G J, Huang S, Zhang G Y 2010 Chinese Phys. Lett. 27 127303Google Scholar

    [143]

    Sun Y J, Trieu S, Yu T J, Chen Z Z, Qi S L, Tian P F, Deng J J, Jin X M, Zhang G Y 2011 Semicond. Sci. Technol. 26 085008Google Scholar

    [144]

    Jung H D, Kim Y B, Kim J M 2016 Korean Patent 101810078 B1 [2016-12-22]

    [145]

    Jung H D, Lee M J, Kim Y B, Kim D H 2018 Korean Patent 102067972 B1 [2018-09-21]

    [146]

    陈志忠, 潘祚坚, 焦飞, 张树霖, 康香宁, 陈怡帆, 詹景麟, 陈毅勇, 聂靖昕, 沈波 2020 中国专利 202010366912.6 [2020-05-01]

    Chen Z Z, Pan Z J, Jiao F, Zhang S L, Kang X N, Chen Y F, Zhan J L, Chen Y Y, Nie J X, Shen B 2020 Chinese Patent 202010366912.6 (in Chinese)

    [147]

    陈志忠, 潘祚坚, 焦飞, 张树霖, 康香宁, 陈怡帆, 詹景麟, 陈毅勇, 聂靖昕, 沈波 2020 中国专利 202010528322.9 [2020-06-11]

    Chen Z Z, Pan Z J, Jiao F, Zhang S L, Kang X N, Chen Y F, Zhan J L, Chen Y Y, Nie J X, Shen B 2020 Chinese Patent 202010528322.9 [2020-06-11] (in Chinese)

    [148]

    Kokubo N, Tsunooka Y, Fujie F, Ohara J, Onda S, Yamada H, Shimizu M, Harada S, Tagawa M, Ujihara T 2019 Jpn. J. Appl. Phys. 58 SCCB06Google Scholar

    [149]

    Bagnall K R, Moore E A, Badescu S C, Zhang L, Wang E N 2017 Rev. Sci. Instrum. 88 113111Google Scholar

    [150]

    Yamamoto H, Agui K, Uchida Y, Mochizuki S, Uruma T, Satoh N, Hashizume T 2017 Jpn. J. Appl. Phys. 56 08LB07Google Scholar

    [151]

    Cunningham W, Gouldwell A, Lamb G, Roy P, Scott, Mathieson K, Bates R, Smith K, Cusco R, Watson I, Glaser M, Rahman M 2001 J. Phys. D 34 2748Google Scholar

    [152]

    Aid S R, Uneme T, Wakabayashi N, Yamazaki K, Uedono A, Matsumoto S 2017 Phys. Status Solidi A 214 1700225Google Scholar

    [153]

    何泽尚, 邢亮, 符鞠建, 刘刚 2018 中国专利 201810972545.7 [2018-08-24]

    He Z S, Xing L, Fu J J, Liu G 2018 Chinese Patent 201810972545.7 [2018-08-24] (in Chinese)

    [154]

    牛小龙, 翁守正, 徐相英, 孙龙洋, 姜晓飞 2017 中国专利 201711432965.8 [2017-12-26]

    Niu X L, Weng S Z, Xu X Y, Sun L Y, Jiang X F 2017 Chinese Patent 201711432965.8 [2017-12-26] (in Chinese)

    [155]

    [赵承潭 2018 中国专利 201910015236.5 [2019-01-08]

    Zhao C T 2019 Chinese Patent 201910015236.5 [2019-01-08] (in Chinese)

    [156]

    朱浩, 刘国旭 2018 中国专利 201810660970.2 [2018-06-25]

    Zhu H, Liu G X 2018 Chinese Patent 201810660970.2 [2018-06-25] (in Chinese)

    [157]

    宋晓欣, 吕志军, 姚琪, 张锋, 刘文渠, 董立文, 崔钊, 孟德天, 王利波 2019 中国专利 201911001793.8 [2019-10-21]

    Song X X, Lv Z J, Yao Q, Zhang F, Liu W Q, Dong L W, Cui Z, Meng D T, Wang L B 2019 Chinese Patent 201911001793.8 [2019-10-21] (in Chinese)

    [158]

    徐尚君, 王鸣昕, 黄洪涛, 朱景辉, 高威 2019 中国专利 201910885722.2 [2019-09-19]

    Xu S J, Wang M X, Huang H T, Zhu J H, Gao W 2019 Chinese Patent 201910885722.2 [2019-09-19] (in Chinese)

    [159]

    Zheng L L, Guo Z Q, Yan W, Lin Y, Lu Y J, Kuo H C, Chen Z, Zhu L H, Wu T Z, Gao Y L 2018 IEEE Access 6 51329Google Scholar

  • [1] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能 光电探测器. 物理学报, 2024, 73(5): 056802. doi: 10.7498/aps.73.20231645
    [2] 王宣, 孙超, 李明杨, 张少东. 不确定浅海环境中水平阵角度域子空间检测. 物理学报, 2022, 71(8): 084304. doi: 10.7498/aps.71.20211742
    [3] 王贯, 顾春, 许立新. 显示设备防蓝光模式和色域的关系. 物理学报, 2022, 71(10): 104205. doi: 10.7498/aps.71.20212356
    [4] 邰建鹏, 郭伟玲, 李梦梅, 邓杰, 陈佳昕. GaN基微缩化发光二极管尺寸效应和阵列显示. 物理学报, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [5] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [6] 靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究. 物理学报, 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [7] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [8] 王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰. 晶圆键合和激光剥离工艺对GaN基垂直结构发光二极管芯片残余应力的影响. 物理学报, 2015, 64(2): 028501. doi: 10.7498/aps.64.028501
    [9] 吕江涛, 赵玉倩, 宋爱娟, 杨琳娟, 张杨宇, 刘艳, 谷琼婵, 姜潇潇, 马振鹤, 王凤文, 司光远. 超小间距纳米柱阵列中的谐振调制. 物理学报, 2013, 62(23): 237806. doi: 10.7498/aps.62.237806
    [10] 刘海波, 吴德伟, 金伟, 王永庆. Duffing振子微弱信号检测方法研究. 物理学报, 2013, 62(5): 050501. doi: 10.7498/aps.62.050501
    [11] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [12] 郑艳斌, 宋煜, 杜宝祥, 潘晶, 丁群. 一种混沌密码序列周期特性检测新方法. 物理学报, 2012, 61(23): 230501. doi: 10.7498/aps.61.230501
    [13] 谢小平, 陈宏平, 曹志彤, 何国光. 归一化KLD系数及多维序列相关和同步的检测. 物理学报, 2012, 61(13): 130505. doi: 10.7498/aps.61.130505
    [14] 王兵, 李志聪, 姚然, 梁萌, 闫发旺, 王国宏. GaN基发光二极管外延中p型AlGaN电子阻挡层的优化生长. 物理学报, 2011, 60(1): 016108. doi: 10.7498/aps.60.016108
    [15] 高向东, 莫玲, 仲训杲, 游德勇, Katayama Seiji. 大功率光纤激光焊焊缝跟踪偏差红外检测方法. 物理学报, 2011, 60(8): 088105. doi: 10.7498/aps.60.088105
    [16] 宋雪云, 张俊兵, 曾祥华, 董雅娟. 电极形状对GaN基发光二极管芯片性能的影响. 物理学报, 2010, 59(7): 4989-4995. doi: 10.7498/aps.59.4989
    [17] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [18] 李荣斌. 同质与异质外延掺杂CVD金刚石薄膜的结构与性能. 物理学报, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [19] 晋建秀, 丘水生, 谢丽英, 冯明库. 一种基于周期轨道统计的混沌信号不可预测性强弱的检测方法. 物理学报, 2008, 57(5): 2743-2749. doi: 10.7498/aps.57.2743
    [20] 谌 龙, 王德石. 基于参数非共振激励混沌抑制原理的微弱方波信号检测. 物理学报, 2007, 56(9): 5098-5102. doi: 10.7498/aps.56.5098
计量
  • 文章访问数:  13912
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-06-16
  • 上网日期:  2020-06-19
  • 刊出日期:  2020-10-05

/

返回文章
返回