-
采用SIMPLE算法对二维流体力学基本方程组进行了数值模拟,研究了Poiseuille-Rayleigh-Bnard流动中对流斑图的分区、成长及水平流动对不同斑图特征物理量的影响.结果表明,上下临界雷诺数Reu,Rel将流动分成三个区域,即行波区、局部行波区、水平流区.Reu和Rel随着相对瑞利数r的增大而增大.在对流斑图的成长阶段,三种斑图随时间的成长过程是不同的,但对流圈都是从下游区开始成长;特征物理量随着时间的变化也是不同的,行波对流和局部行波对流的最大垂直流速wmax和努塞尔数Nu经过指数增长阶段后进入周期变化的稳定阶段;水平流斑图的wmax和Nu经过缓慢增长后又缓慢降到稳定值.三种斑图的wmax和Nu随雷诺数Re增大而减小,不同斑图区域有不同的变化规律.本文给出了Reu和Rel随r的变化关系式及不同斑图的wmax和Nu随着Re的变化关系式.
-
关键词:
- Poiseuille-Rayleigh-B /
- nard流动 /
- 行波 /
- 局部行波 /
- 斑图的成长
The natural phenomena which we are familiar with, such as the convections in reservoir, ocean, atmosphere, etc., all occur in nonequilibrium open systems away from heat equilibria. The Poiseuille-Rayleigh-Bnard flow in a horizontal fluid layer heated from below has always been a typical experimental system for studying the nonlinear problem and the pattern formation. The experimental system can be accurately described by the full hydrodynamic equations. Therefore, the researches of the convection spatiotemporal structure, stability and the nonlinear dynamics by using the Poiseuille-Rayleigh-Bnard flow model possess certain representative and theoretical significance and practical value. So far, the investigation on the Poiseuille-Rayleigh-Bnard flow in a horizontal layer heated from below has concentrated mainly on the stability and made remarkable progress. However, a partition of convection pattern and growths of different patterns in the Poiseuille-Rayleigh-Bnard flow have been seldom studied in theory. By using a two-dimensional numerical simulation of the fully hydrodynamic equations in this paper, the research is conducted on the partition of convection pattern, growth and the effects of horizontal flow on the characteristic parameters of different patterns in the Poiseuille-Rayleigh-Bnard flow in a rectangular at an aspect ratio of 10. The SIMPLE algorithm is used to numerically simulate the two-dimensional fully hydrodynamic equations. The basic equations are solved in primitive variables in two-dimensional staggered grids with a uniform spatial resolution based on the control volume method. The power law scheme is used to treat the convective-diffusive terms in the discrete formulation. Results show that a flow zone is divided into three zones by the upper and lower critical Reynolds numbers Reu and Rel, i.e., traveling wave zone, localized traveling wave zone, and horizontal flow zone, where each of the Rel and Reu is a function of reduced Rayleigh number r and increases with increasing r. In the growth stage of the convection pattern, the growth processes of three kinds of patterns with time are different, but the convection rolls all start to grow from the downstream. The variations of characteristic parameters with time are also different, with maximum vertical velocity wmax and Nusselt number Nu of traveling wave and localized traveling wave entering into the stable stage of the cycle variation after the exponential growth stage, and the wmax and Nu of horizontal flow pattern decrease down to a stable constant after slow increase. The values of wmax and Nu of three types of patterns decrease with increasing Reynold number Re, with different laws being in the different pattern areas. In this paper, formulas for computing the Rel and Reu varying with r and formulas for computing the wmax and Nu varying with Re in different convection patterns are suggested.-
Keywords:
- Poiseuille-Rayleigh-B /
- nard flow /
- traveling wave /
- localized traveling wave /
- growth of convection pattern
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Getling A V 1998 Rayleigh-Bénard Convection (London:World Scientific) pp98-112
[3] Chandrasekhar S 1961 Hydrodynamics and Hydromagnetic Stability (Oxford:Clarendon Press) pp126-146
[4] Ning L Z, Qi X, Yu L, Zhou Y, Wang S Y, Li G D 2010 J. Basic Sci. Eng. 18 281(in Chinese)[宁利中, 齐昕, 余荔, 周洋, 王思怡, 李国栋2010应用基础与工程科学学报18 281]
[5] Moses E, Fineberg J, Steinberg V 1987 Phys. Rev. A 35 2757
[6] Heinrichs R, Ahlers G, Cannel D S 1987 Phys. Rev. A 35 2761
[7] Barten W, Lucke M, Hort W, Kamps M 1989 Phys. Rev. Lett. 63 376
[8] Barten W, Lucke M, Kamps M 1991 Phys. Rev. Lett. 66 2621
[9] Barten W, Lucke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662
[10] Taraut A V, Smorodin B L, Lcke M 2012 New J. Phys. 14 093055
[11] Mercader I, Batiste O, Alonso A, Knobloch E 2010 Fluid Dyn. Res. 42 025505
[12] Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586
[13] Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. China G 39 746(in Chinese)[宁利中, 余荔, 袁喆, 周洋2009中国科学G 39 746]
[14] Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2009 Acta Phys. Sin. 58 2528(in Chinese)[宁利中, 齐昕, 周洋, 余荔2009物理学报58 2528]
[15] Ning L Z, Wang Y Q, Yuan Z, Li K J, Hu B 2016 Chin. Sci. Bull. 61 872(in Chinese)[宁利中, 王永起, 袁喆, 李开继, 胡彪2016科学通报61 872]
[16] Ning L Z, Harada Y, Yahata H, Li J Z 2004 J. Hydrodyn. 16 151
[17] Ning L Z, Qi X, Harada Y, Yahata H 2006 J. Hydrodyn. 18 199
[18] Ouazzani M T, Platten J K, Mojtabi A 1990 Int. J. Heat Mass Transfer 33 1417
[19] Li G D, Huang Y N 2004 Adv. Mech. 34 263(in Chinese)[李国栋, 黄永念2004力学进展34 263]
[20] Li G D, Huang Y N 2004 Acta Phys. Sin. 53 3800(in Chinese)[李国栋, 黄永念2004物理学报53 3800]
[21] Zhao B X 2012 Chin. J. Hydrodyn. 27 264(in Chinese)[赵秉新2012水动力学研究与进展27 264]
[22] Ning L Z, Zhou Y, Wang S Y, Li G D, Zhang S Y, Zhou Q 2010 Chin. J. Hydrodyn. 25 299(in Chinese)[宁利中, 周洋, 王思怡, 李国栋, 张淑芸, 周倩2010水动力学研究与进展25 299]
-
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Getling A V 1998 Rayleigh-Bénard Convection (London:World Scientific) pp98-112
[3] Chandrasekhar S 1961 Hydrodynamics and Hydromagnetic Stability (Oxford:Clarendon Press) pp126-146
[4] Ning L Z, Qi X, Yu L, Zhou Y, Wang S Y, Li G D 2010 J. Basic Sci. Eng. 18 281(in Chinese)[宁利中, 齐昕, 余荔, 周洋, 王思怡, 李国栋2010应用基础与工程科学学报18 281]
[5] Moses E, Fineberg J, Steinberg V 1987 Phys. Rev. A 35 2757
[6] Heinrichs R, Ahlers G, Cannel D S 1987 Phys. Rev. A 35 2761
[7] Barten W, Lucke M, Hort W, Kamps M 1989 Phys. Rev. Lett. 63 376
[8] Barten W, Lucke M, Kamps M 1991 Phys. Rev. Lett. 66 2621
[9] Barten W, Lucke M, Kamps M, Schmitz R 1995 Phys. Rev. E 51 5662
[10] Taraut A V, Smorodin B L, Lcke M 2012 New J. Phys. 14 093055
[11] Mercader I, Batiste O, Alonso A, Knobloch E 2010 Fluid Dyn. Res. 42 025505
[12] Mercader I, Batiste O, Alonso A, Knobloch E 2011 J. Fluid Mech. 667 586
[13] Ning L Z, Yu L, Yuan Z, Zhou Y 2009 Sci. China G 39 746(in Chinese)[宁利中, 余荔, 袁喆, 周洋2009中国科学G 39 746]
[14] Ning L Z, Wang N, Yuan Z, Li K J, Wang Z Y 2009 Acta Phys. Sin. 58 2528(in Chinese)[宁利中, 齐昕, 周洋, 余荔2009物理学报58 2528]
[15] Ning L Z, Wang Y Q, Yuan Z, Li K J, Hu B 2016 Chin. Sci. Bull. 61 872(in Chinese)[宁利中, 王永起, 袁喆, 李开继, 胡彪2016科学通报61 872]
[16] Ning L Z, Harada Y, Yahata H, Li J Z 2004 J. Hydrodyn. 16 151
[17] Ning L Z, Qi X, Harada Y, Yahata H 2006 J. Hydrodyn. 18 199
[18] Ouazzani M T, Platten J K, Mojtabi A 1990 Int. J. Heat Mass Transfer 33 1417
[19] Li G D, Huang Y N 2004 Adv. Mech. 34 263(in Chinese)[李国栋, 黄永念2004力学进展34 263]
[20] Li G D, Huang Y N 2004 Acta Phys. Sin. 53 3800(in Chinese)[李国栋, 黄永念2004物理学报53 3800]
[21] Zhao B X 2012 Chin. J. Hydrodyn. 27 264(in Chinese)[赵秉新2012水动力学研究与进展27 264]
[22] Ning L Z, Zhou Y, Wang S Y, Li G D, Zhang S Y, Zhou Q 2010 Chin. J. Hydrodyn. 25 299(in Chinese)[宁利中, 周洋, 王思怡, 李国栋, 张淑芸, 周倩2010水动力学研究与进展25 299]
计量
- 文章访问数: 5569
- PDF下载量: 172
- 被引次数: 0