搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密颗粒射流撞击壁面颗粒膜表面波纹特征

钱文伟 李伟锋 施浙杭 刘海峰 王辅臣

引用本文:
Citation:

稠密颗粒射流撞击壁面颗粒膜表面波纹特征

钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣

Characteristics of surface waves on the granular sheet of dense granular jet impingement

Qian Wen-Wei, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen
PDF
导出引用
  • 采用高速摄像仪对稠密颗粒射流撞击有限尺寸壁面的流动过程进行了实验研究,重点研究了颗粒膜及其表面波纹特征,考察了颗粒粒径、射流速度和固含率等因素对颗粒膜形态和表面波纹的影响.研究结果表明,随着颗粒粒径增大,稠密颗粒撞壁流由颗粒膜向散射模式转变.与液体射流撞壁液膜相比,颗粒膜扩展角较大,射流速度对其影响不显著.稠密颗粒射流撞壁颗粒膜表面波纹存在明显的叠加现象,颗粒膜表面波纹频率比液膜大约低一个数量级.颗粒膜表面波纹主要由射流脉动引起,表面波纹频率与射流脉动频率具有相同的数量级.
    Dense granular jet impingement widely exists in numerous natural flow phenomena and industrial processes. It is significant to investigate the influencing factors of the flow patterns of dense granular jet impingement and reveal the evolution rules of flow patterns. The dynamic behaviors of dense granular jets impinging on a flat target are experimentally studied by a high-speed camera and image processing software of NIH. The effects of the particle diameter(Dpar), the granular jet velocity(U0) and the solid content of the granular jet(X) on the flow patterns and surface waves of granular sheet are investigated. Two patterns, i.e., the liquid-like granular film and the scattering pattern are identified from the dense granular jet impingement. The results show that with the increase of the particle diameter, the solid content of the granular jet reduces, and the interparticle collision frequency decreases, which results in the granular sheet evolving into the scattering pattern. The opening angle of the granular sheet() is bigger than that of the liquid sheet, and the granular jet velocity plays an insignificant role in the opening angle. The interesting behaviors of liquid-like surface waves are identified in the granular sheet. The frequency of surface wave of the granular sheet(f) is an order of magnitude smaller than that of the liquid sheet. The surface wave length() increases and frequency decreases with the increase of radial position, as the surface waves merge during the granular sheet spreading radially. The surface wave spreading velocity normalized by the granular jet velocity is a constant of about 0.4. With the increase of the granular jet velocity, the pulsation of granular jet occurs due to the pressure fluctuation in the discharge process under the effect of gas-solid interaction. The frequencies of surface waves of both the granular sheet and the granular jet pulsation become the same generally. It is indicated that the surface wave is primarily caused by the granular jet pulsation. The results in this paper present the knowledge of the dense granular jet impingement and provide some principles for the steady operation of dense granular jet impingement in industrial process.
      通信作者: 李伟锋, liweif@ecust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:91434130)和中央高校基本科研业务费专项基金(批准号:WB1516016)资助的课题.
      Corresponding author: Li Wei-Feng, liweif@ecust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 91434130) and the Fundamental Research Funds for the Central Universities, China(Grant No. WB1516016).
    [1]

    Bremond N, Villermaux E 2006 J. Fluid Mech. 549 273

    [2]

    Clanet C 2000 Phys. Rev. Lett. 85 5106

    [3]

    Clanet C 2001 J. Fluid Mech. 430 111

    [4]

    Clanet C 2007 Annu. Rev. Fluid Mech. 39 469

    [5]

    Villermaux E, Clanet C 2002 J. Fluid Mech. 462341

    [6]

    Wu Z R, Liu M, Liu Q S, Song Z X, Wang S S 2013 Acta Phys. Sin. 64244701(in Chinese)[吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思2013物理学报64 244701]

    [7]

    Liu M, Wang S L, Wu Z R 2014 Acta Phys. Sin. 63 154702(in Chinese)[刘梅, 王松岭, 吴正人2014物理学报63 154702]

    [8]

    Wang S L, Liu M, Wang S S, Wu Z R 2015 Acta Phys. Sin. 64 014701(in Chinese)[王松岭, 刘梅, 王思思, 吴正人2015物理学报64 014701]

    [9]

    Huang G F, Li W F, Tu G Y, Wang F C 2014 CIESC J. 65 3789(in Chinese)[黄国峰, 李伟锋, 屠功毅, 王辅臣2014化工学报65 3789]

    [10]

    Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R, Jaeger H M 2009 Nature 459 1110

    [11]

    Yan J, Yang X Q, Deng M, Guo H P, Ye J L 2010 Chin. Phys. B 19 128202

    [12]

    Lu H, Liu H F, Li W F, Xu J L 2013 AIChE J. 59 1882

    [13]

    Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001

    [14]

    Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201

    [15]

    Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307

    [16]

    Ellowitz J, Turlier H, Guttenberg N, Zhang W W, Nagel S R 2013 Phys. Rev. Lett. 111 168001

    [17]

    Guttenberg N 2012 Phys. Rev. E 85 051303

    [18]

    Sano T G, Hayakawa H 2012 Phys. Rev. E 86 041308

    [19]

    Sano T G, Hayakawa H 2013 Prog. Theor. Exp. Phys. 2013 103J02

    [20]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay, H 2007 J. Fluid Mech. 572 413

    [21]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay H 2011 AIChE J. 57 1434

    [22]

    Varieras D, Brancher P, Giovannini A 2007 Flow, Turb. Comb. 78 1

  • [1]

    Bremond N, Villermaux E 2006 J. Fluid Mech. 549 273

    [2]

    Clanet C 2000 Phys. Rev. Lett. 85 5106

    [3]

    Clanet C 2001 J. Fluid Mech. 430 111

    [4]

    Clanet C 2007 Annu. Rev. Fluid Mech. 39 469

    [5]

    Villermaux E, Clanet C 2002 J. Fluid Mech. 462341

    [6]

    Wu Z R, Liu M, Liu Q S, Song Z X, Wang S S 2013 Acta Phys. Sin. 64244701(in Chinese)[吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思2013物理学报64 244701]

    [7]

    Liu M, Wang S L, Wu Z R 2014 Acta Phys. Sin. 63 154702(in Chinese)[刘梅, 王松岭, 吴正人2014物理学报63 154702]

    [8]

    Wang S L, Liu M, Wang S S, Wu Z R 2015 Acta Phys. Sin. 64 014701(in Chinese)[王松岭, 刘梅, 王思思, 吴正人2015物理学报64 014701]

    [9]

    Huang G F, Li W F, Tu G Y, Wang F C 2014 CIESC J. 65 3789(in Chinese)[黄国峰, 李伟锋, 屠功毅, 王辅臣2014化工学报65 3789]

    [10]

    Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R, Jaeger H M 2009 Nature 459 1110

    [11]

    Yan J, Yang X Q, Deng M, Guo H P, Ye J L 2010 Chin. Phys. B 19 128202

    [12]

    Lu H, Liu H F, Li W F, Xu J L 2013 AIChE J. 59 1882

    [13]

    Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001

    [14]

    Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201

    [15]

    Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307

    [16]

    Ellowitz J, Turlier H, Guttenberg N, Zhang W W, Nagel S R 2013 Phys. Rev. Lett. 111 168001

    [17]

    Guttenberg N 2012 Phys. Rev. E 85 051303

    [18]

    Sano T G, Hayakawa H 2012 Phys. Rev. E 86 041308

    [19]

    Sano T G, Hayakawa H 2013 Prog. Theor. Exp. Phys. 2013 103J02

    [20]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay, H 2007 J. Fluid Mech. 572 413

    [21]

    Boudet J F, Amarouchene Y, Bonnier B, Kellay H 2011 AIChE J. 57 1434

    [22]

    Varieras D, Brancher P, Giovannini A 2007 Flow, Turb. Comb. 78 1

  • [1] 孙旗霞, 庄建宏, 刘百诚, 沈振兴. 运动颗粒流中的摩擦起电. 物理学报, 2022, 71(8): 084501. doi: 10.7498/aps.71.20211647
    [2] 王悦, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流倾斜撞击颗粒膜特征. 物理学报, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [3] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [4] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响. 物理学报, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [5] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应. 物理学报, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [6] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [7] 容亮湾, 詹杰民. 稠密颗粒物质系统鼓泡现象的微观结构研究. 物理学报, 2010, 59(8): 5572-5580. doi: 10.7498/aps.59.5572
    [8] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并. 物理学报, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [9] 鲍德松, 雷哲敏, 胡国琦, 张训生, 唐孝威. 瓶颈开口角对二维颗粒流的影响. 物理学报, 2007, 56(10): 5922-5925. doi: 10.7498/aps.56.5922
    [10] 黄德财, 孙 刚, 厚美瑛, 陆坤权. 颗粒速度在颗粒流稀疏流-密集流转变中的作用. 物理学报, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [11] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [12] 吴 强, 郑瑞伦. 含铁磁颗粒的颗粒膜自旋激发弛豫研究. 物理学报, 2005, 54(7): 3397-3401. doi: 10.7498/aps.54.3397
    [13] 周 英, 鲍德松, 张训生, 雷哲民, 胡国琦, 唐孝威. 边界条件对二维斜面颗粒流颗粒分布的影响. 物理学报, 2004, 53(10): 3389-3393. doi: 10.7498/aps.53.3389
    [14] 邓联文, 江建军, 冯则坤, 张秀成, 何华辉. FeCoBSiO2磁性纳米颗粒膜的微波电磁特性. 物理学报, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [15] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [16] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [17] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
    [18] 杨新娥, 杨吉生, 东剑涛, 车明日. Fe-Ag金属颗粒膜的巨磁电阻. 物理学报, 1997, 46(9): 1834-1840. doi: 10.7498/aps.46.1834
    [19] 王文鼐, 臧文成, 顾刚, 都有为, 洪建明. 镍超微颗粒的表面磁性. 物理学报, 1992, 41(9): 1537-1541. doi: 10.7498/aps.41.1537
    [20] 王炜, 余正, 孙元善, 姚希贤. 二维颗粒膜超导电性. 物理学报, 1986, 35(8): 1081-1086. doi: 10.7498/aps.35.1081
计量
  • 文章访问数:  4813
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-06-28
  • 刊出日期:  2016-11-05

/

返回文章
返回