搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构

李白 吴太权 汪辰超 江影

引用本文:
Citation:

Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构

李白, 吴太权, 汪辰超, 江影

Structure of BP3S monolayer on Au(111)

Li Bai, Wu Tai-Quan, Wang Chen-Chao, Jiang Ying
PDF
导出引用
  • 利用第一性原理研究了甲基联二苯丙硫醇盐(BP3S)单体、虚拟Au表面BP3S的分子链和单层膜及BP3S/Au(111)吸附系统的原子结构.计算表明BP3S单体呈对称结构,两苯环夹角为3510.首先BP3S单体在虚拟Au(111)表面自组装成稳定的单一分子链.然后在虚拟Au(111)表面,分子链错位排列自组装成两种稳定的单层膜.在虚拟Au(111)-(37)和Au(111)-(313)表面,分子链与虚拟表面夹角分别为60和30.最后把两种稳定的单层膜吸附在Au(111)表面的四个吸附位,计算表明只有桥位和顶位稳定,且桥位的吸附能比顶位的吸附能低.比较吸附前后BP3S单层膜的结构变化,可知其变化不大,这说明吸附系统的结构参数主要取决于单层膜内的相互作用,衬底对其的影响不大.
    The first-principle technique is employed to determine the structure of the BP3S monomer, the structures of the molecular chains and monolayers on virtual Au(111), and the atomic structure of BP3S/Au(111) adsorption system. The results show that the BP3S monomer presents a symmetric structure, and the angle between two benzene rings is 3510. At first, many BP3S monomers are assembled into one stable molecular chain in the virtual Au(111), the distance between the neighbor monmers is 0.516 nm, and the bind energy between the monmer and the molecular chain is 0.071 eV. It is a self-assembly system. Then many molecular chains are assembled into two stable monolayers in the virtual Au(111)-(37) and Au(111)-(313), and their coverages are 0.20 ML and 0.14 ML, respectively. In the virtual Au(111)-(37) and Au(111)-(313), the angles between the molecular chains and the virtual surface are 60 and 30, respectively, and the binding energies between the monmer and two monolayers are 0.101 eV and 0.125 eV, respectively. They are both the self-assembly systems. Finally, two monolayers are adsorbed on the Au(111)-(37) and Au(111)-(313) at four adsorption sites. The S atom is easy to obtain two electrons and turn into S2- ion, and the Au atom is easy to lose one electron and become Au+ ion, so the bridge site(two Au+ ions) is more stable than the top site(one Au+ ion), while the hcp and fcc hollow sites(three Au+ ions) are both unstable. In the Au(111)-(37), the chemisorption energy of the bridge site(-1.879 eV) is lower than that of the top site(-1.511 eV). And in the Au(111)-(313), the chemisorption energy of the bridge site(-1.691 eV) is lower than that of the top site(-1.492 eV). The results are confirmed in the other S-Au adsorption systems, such as the C6H13S/Au(111). A comparison between the structures of the BP3S monolayer before and after being adsorbed on Au(111) clearly shows that the structural parameters of the adsorption system depend mainly on the interaction in the monolayer, and that the contribution of Au(111) to the structure of the monolayer is weak. These results are confirmed in the other self-assembly adsorption systems.
      通信作者: 吴太权, buckyballling@hotmail.com
    • 基金项目: 浙江省自然科学基金(批准号:LY13E080007)资助的课题.
      Corresponding author: Wu Tai-Quan, buckyballling@hotmail.com
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China(Grant No. LY13E080007).
    [1]

    Miller C J, Majda M 1986 J. Am. Chem. Soc. 108 3118

    [2]

    Laibinis P E, Hickman J J, Wrighton M S, Whitesides G M 1989 Science 245 845

    [3]

    Aizenberg J, Black A J, Whitesides G M 1998 Nature 394 868

    [4]

    Wirth M J, Fairbank R W P, Fatunmbi H O 1997 Science 275 44

    [5]

    Hu H L, Zhang K, Wang Z X, Wang X P 2006 Acta Phys. Sin. 55 1430(in Chinese)[胡海龙, 张琨, 王振兴, 王晓平2006物理学报55 1430]

    [6]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301(in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013物理学报62 186301]

    [7]

    Madueno R, Räisänen M T, Silien C, Buck M 2008 Nature 454 618

    [8]

    Wu T Q, Zhu P, Wang X Y, Luo H L 2011 Physica B 406 3773

    [9]

    Wu T Q, Zhu P, Jiao Z W, Wang X Y, Luo H L 2012 Appl. Surf. Sci. 263 502

    [10]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399

    [11]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1

    [12]

    Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425

    [13]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158

    [14]

    Perdew J P, Burke K, Ernzerhof M 2010 Phys. Lett. A 374 1534

    [15]

    Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

  • [1]

    Miller C J, Majda M 1986 J. Am. Chem. Soc. 108 3118

    [2]

    Laibinis P E, Hickman J J, Wrighton M S, Whitesides G M 1989 Science 245 845

    [3]

    Aizenberg J, Black A J, Whitesides G M 1998 Nature 394 868

    [4]

    Wirth M J, Fairbank R W P, Fatunmbi H O 1997 Science 275 44

    [5]

    Hu H L, Zhang K, Wang Z X, Wang X P 2006 Acta Phys. Sin. 55 1430(in Chinese)[胡海龙, 张琨, 王振兴, 王晓平2006物理学报55 1430]

    [6]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301(in Chinese)[吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍2013物理学报62 186301]

    [7]

    Madueno R, Räisänen M T, Silien C, Buck M 2008 Nature 454 618

    [8]

    Wu T Q, Zhu P, Wang X Y, Luo H L 2011 Physica B 406 3773

    [9]

    Wu T Q, Zhu P, Jiao Z W, Wang X Y, Luo H L 2012 Appl. Surf. Sci. 263 502

    [10]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2014 Vacuum 101 399

    [11]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Jiang Z T, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 339 1

    [12]

    Wu T Q, Wang X Y, Zhou H, Luo H L, Jiao Z W, Zhu P 2014 Appl. Surf. Sci. 290 425

    [13]

    Wu T Q, Cao D, Wang X Y, Jiao Z W, Chen M G, Luo H L, Zhu P 2015 Appl. Surf. Sci. 330 158

    [14]

    Perdew J P, Burke K, Ernzerhof M 2010 Phys. Lett. A 374 1534

    [15]

    Florence A J, Bardin J, Johnston B, Shankland N, Griffin T A N, Shankland K 2009 Z. Kristallogr. Suppl. 30 215

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

  • [1] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [2] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, 2021, 70(22): 226101. doi: 10.7498/aps.70.20211152
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, 2017, 66(2): 026301. doi: 10.7498/aps.66.026301
    [5] 张天辉, 曹镜声, 梁颖, 刘向阳. 胶体在基础物理研究中的应用. 物理学报, 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [6] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [7] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构. 物理学报, 2013, 62(18): 186301. doi: 10.7498/aps.62.186301
    [8] 吴太权. 微锗掺杂直拉单晶硅中的锗-空位复合体. 物理学报, 2012, 61(6): 063101. doi: 10.7498/aps.61.063101
    [9] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [10] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [11] 臧渡洋, 张永建. 水/空气界面纳米颗粒单层膜流变特性的锥体压入法研究. 物理学报, 2012, 61(2): 026803. doi: 10.7498/aps.61.026803
    [12] 臧渡洋, 张永建, Langevin Dominique. SiO2纳米颗粒单层膜流变特性的双Wilhelmy片法研究. 物理学报, 2011, 60(7): 076801. doi: 10.7498/aps.60.076801
    [13] 刘青, 王鸣, 郭文华, 闫海涛, 喻平. 一种胶体光子晶体修饰的光纤. 物理学报, 2010, 59(10): 7086-7090. doi: 10.7498/aps.59.7086
    [14] 黄渊, 刘红, 张青川. 利用微悬臂梁研究聚N-异丙基丙烯酰胺在金表面的自组装. 物理学报, 2009, 58(9): 6122-6127. doi: 10.7498/aps.58.6122
    [15] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [16] 王晓冬, 董 鹏, 陈胜利, 仪桂云. 亚微米聚苯乙烯微球在气-液界面组装的机理研究. 物理学报, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [17] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [18] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [19] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [20] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
计量
  • 文章访问数:  2920
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-27
  • 修回日期:  2016-08-09
  • 刊出日期:  2016-11-05

Au(111)表面甲基联二苯丙硫醇盐单层膜的原子结构

    基金项目: 浙江省自然科学基金(批准号:LY13E080007)资助的课题.

摘要: 利用第一性原理研究了甲基联二苯丙硫醇盐(BP3S)单体、虚拟Au表面BP3S的分子链和单层膜及BP3S/Au(111)吸附系统的原子结构.计算表明BP3S单体呈对称结构,两苯环夹角为3510.首先BP3S单体在虚拟Au(111)表面自组装成稳定的单一分子链.然后在虚拟Au(111)表面,分子链错位排列自组装成两种稳定的单层膜.在虚拟Au(111)-(37)和Au(111)-(313)表面,分子链与虚拟表面夹角分别为60和30.最后把两种稳定的单层膜吸附在Au(111)表面的四个吸附位,计算表明只有桥位和顶位稳定,且桥位的吸附能比顶位的吸附能低.比较吸附前后BP3S单层膜的结构变化,可知其变化不大,这说明吸附系统的结构参数主要取决于单层膜内的相互作用,衬底对其的影响不大.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回