搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有条纹磁畴结构的NiFe薄膜的制备与磁各向异性研究

李金财 詹清峰 潘民杰 刘鲁萍 杨华礼 谢亚丽 谢淑红 李润伟

引用本文:
Citation:

具有条纹磁畴结构的NiFe薄膜的制备与磁各向异性研究

李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟

Preparation and magnetic anisotropy of NiFe film with stripe domains

Li Jin-Cai, Zhan Qing-Feng, Pan Min-Jie, Liu Lu-Ping, Yang Hua-Li, Xie Ya-Li, Xie Shu-Hong, Li Run-Wei
PDF
导出引用
  • 具有条纹磁畴结构的磁性薄膜表现出面内转动磁各向异性,对于解决高频电子器件的方向性问题起着至关重要的作用.本文采用射频磁控溅射的方法,研究了NiFe薄膜的厚度、溅射功率密度、溅射气压等制备工艺参数对条纹磁畴结构、面内静态磁各向异性、面内转动磁各向异性、垂直磁各向异性的影响规律.研究发现,在功率密度15.6 W/cm2与溅射气压2 mTorr(1 Torr=1.33322102 Pa)下生长的NiFe薄膜,表现出条纹磁畴的临界厚度在250 nm到300 nm之间.厚度为300 nm的薄膜比250 nm薄膜的垂直磁各向异性场增大近一倍,从而磁矩偏离膜面形成条纹磁畴结构,并表现出面内转动磁各向异性.高溅射功率密度可以降低薄膜出现条纹磁畴的临界厚度.在相同功率密度15.6 W/cm2下生长300 nm的NiFe薄膜,随着溅射气压由2 mTorr增大到9 mTorr,NiFe薄膜的垂直磁各向异性场逐渐由1247.8 Oe(1 Oe=79.5775 A/m)增大到3248.0 Oe,面内转动磁各向异性场由72.5 Oe增大到141.9 Oe,条纹磁畴周期从0.53 m单调减小到0.24 m.NiFe薄膜的断面结构表明柱状晶的形成是表现出条纹磁畴结构的本质原因,高功率密度下低溅射气压有利于柱状晶结构的形成,表现出规整的条纹磁畴结构,高溅射气压会导致柱状晶纤细化,面内转动磁各向异性与面外垂直磁各向异性增强,条纹磁畴结构变得混乱.
    Magnetic anisotropy is one of the most important fundamental properties of magnetic film.For the high-frequency applications,the magnetic anisotropy determines the ferromagnetic resonance frequency of magnetic film.Due to the directionality of conventional static magnetic anisotropy in magnetic film,the high-frequency device usually exhibits a remarkable angular dependent behavior.Only when the microwave magnetic field is perpendicular to the magnetic anisotropy,can the device work at the best performance.The magnetic film with a thickness beyond a critical value displays a stripe domain structure as well as an in-plane rotatable magnetic anisotropy,which can be an important strategy to solve the problem of magnetic field orientation dependent performance in high-frequency device.Thus, the fabrication,the magnetic anisotropy,the magnetic domain and the high-frequency behavior for magnetic film with stripe domain structure have received extensive attention.Previously,a lot of studies have qualitatively indicated that the different fabrication processes could change the critical thickness values of displaying stripe domains,the magnetic domains,and the magnetic anisotropies in many magnetic films.However,the quantitative investigation,especially regarding the magnetic anisotropy which determines the high-frequency behaviors of magnetic films,is less.NiFe alloys display excellent soft magnetic properties,which have been extensively applied to various spintronic devices.In addition, the stripe magnetic domain is discovered for the first time in NiFe film.In this work,we fabricate NiFe magnetic thin films by using radio frequency magnetron sputtering technique at room temperature and quantitatively study the effects of film thickness,sputtering power density and Ar pressure on the magnetic domain structure,in-plane static magnetic anisotropy,in-plane rotatable magnetic anisotropy and out-of-plane magnetic anisotropy.For NiFe films fabricated at a power density of 15.6 W/cm2 and an Ar pressure of 2 mTorr (1 Torr=1.33322102 Pa),the critical thickness values for the appearance of stripe domain structures in NiFe films are between 250 and 300 nm.The out-of-plane magnetic anisotropy field of 300 nm NiFe film is nearly twice as that of 250 nm NiFe film,which gives rise to the occurrence of stripe domain structure as well as the in-plane rotatable magnetic anisotropy.The high sputtering power density could reduce the critical thickness for the occurrence of stripe domains.For 300 nm NiFe film fabricated at a power density of 15.6 W/cm2,with Ar pressure increasing from 2 to 9 mTorr,the out-of-plane magnetic anisotropy field increases from 1247.8 to 3248.0 Oe (1 Oe=79.5775 A/m) and the in-plane rotatable magnetic anisotropy field increases from 72.5 to 141.9 Oe.Meanwhile,the stripe magnetic domain structure changes from well aligned to disordered state,and the corresponding wavelength of stripe domain is reduced from 0.53 to 0.24 m.The cross-sectional characterizations of NiFe film indicate that the formation of columnar structure produces an out-of-plane magnetic anisotropy,giving rise to the appearance of stripe magnetic domain structures.The low Ar pressure is in favor of the formation of columnar structure in magnetic film under the high sputtering power density,which gives rise to the appearance of well aligned stripe magnetic domains.However,the high Ar pressure leads to a fibrous columnar structure,which enhances the out-of-plane magnetic anisotropy and reduces the critical thickness for the occurrence of stripe domains.Our investigation provides an important reference to fabricating magnetic films and controlling their static and rotatable magnetic anisotropies for the application in high-frequency devices.
      通信作者: 詹清峰, zhanqf@nimte.ac.cn;shxie@xtu.edu.cn ; 谢淑红, zhanqf@nimte.ac.cn;shxie@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374312,51525103,51522105,11372268)、国家重点研发项目(批准号:2012CB933004,2016YFA0201102)、中国科学院重点部署项目(批准号:KJZD-EWM05)、湖南省杰出青年基金(批准号:13JJ1019)和宁波市科技创新团队(批准号:2015B11001)资助的课题.
      Corresponding author: Zhan Qing-Feng, zhanqf@nimte.ac.cn;shxie@xtu.edu.cn ; Xie Shu-Hong, zhanqf@nimte.ac.cn;shxie@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11374312, 51525103, 51522105, 11372268), the National Key Technologies RD Program of China(Grant Nos. 2012CB933004, 2016YFA0201102), the Key Research Program of the Chinese Academy of Sciences(Grant No. KJZD-EWM05), the Science Fund for Distinguished Young Scholars of Hunan Province, China(Grant No. 13JJ1019), and the Ningbo Science and Technology Innovation Team, China(Grant No. 2015B11001).
    [1]

    Yu Y, Zhan Q F, Wei J W, Wang J B, Dai G H, Zuo Z H, Zhang X S, Liu Y W, Yang H L, Zhang Y, Xie S H, Wang B M, Li R W 2015 Appl. Phys. Lett. 106 162405

    [2]

    Li C Y, Chai G Z, Yang C C, Wang W F, Xue D S 2015 Sci. Rep. 5 17023

    [3]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [4]

    Yoo J H, Restorff J B, Wun F M, Flatau A B 2008 J. Appl. Phys. 103 07B325

    [5]

    Acher O, Dubourg S 2008 Phys. Rev. B 77 104440

    [6]

    Perrin G, Acher O, Peuzin J C, Vukadinovic N 1996 J. Magn. Magn. Mater. 157-158 289

    [7]

    Iakubov I T, Lagarkov A N, Maklakov S A, Osipov A V, Rozanov K N, Ryzhikov I A, Starostenko S N 2006 J. Magn. Magn. Mater. 300 e74

    [8]

    Wei J W, Zhu Z T, Feng H M, Du J L, Liu Q F, Wang J B 2015 J. Phys. D:Appl. Phys. 48 465001

    [9]

    Chai G Z, Phuoc N N, Ong C K 2012 Sci. Rep. 2 832

    [10]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503(in Chinese)[张志东2015物理学报64 067503]

    [11]

    Wang G X, Dong C H, Yan Z J, Wang T, Chai G Z, Jiang C J, Xue D S 2013 J. Alloys Compd. 573 118

    [12]

    Zhou C, Wang F L, Wei W W, Wang G X, Jiang C J, Xue D S 2013 J. Phys. D:Appl. Phys. 46 425002

    [13]

    Soh W T, Phuoc N N, Tan C Y, Ong C K 2013 J. Appl. Phys. 114 053908

    [14]

    Singh G, Rout P K, Porwal R, Budhani R C 2012 Appl. Phys. Lett. 101 022411

    [15]

    Chikazumi S 1997 Physics of Ferromagnetism (Vol. 6)(Oxford:Oxford University Press) p451

    [16]

    Chai G Z, Phuoc N N, Ong C K 2013 Appl. Phys. Lett. 103 042412

    [17]

    Zhou C, Wei W W, Jiang C J 2015 Appl. Phys. A. 121 39

    [18]

    Barturen M, Salles B R, Schio P, Milano J, Butera A, Bustingorry S, Ramos C, Oliveira A J A, Eddrief M, Lacaze E, Gendron F, Etgens V H, Marangolo M 2012 Appl. Phys. Lett. 101 092404

    [19]

    Fin S, Tomasello R, Bisero D, Marangolo M, Sacchi M, Popescu H, Eddrief M, Hepbum C, Finocchio G, Carpentieri M, Rettori A, Pini M G, Tacchi S 2015 Phys. Rev. B 92 224411

    [20]

    Sharma P, Kimura H, Inoue A, Arenholz E, Guo J H 2006 Phys. Rev. B 73 052401

    [21]

    álvarez N R, Montalbetti M E V, Gómez J E, Moya R A E, Vicente á M A, Goovaerts E, Butera A 2015 J. Phys. D:Appl. Phys. 48 405003

    [22]

    Yu J, Chang C H, Karns D, Ju G P, Kubota Y, Eppler W, Brucker C, Weller D 2002 J. Appl. Phys. 91 8357

    [23]

    Wang G X, Dong C H, Wang W X, Wang Z L, Chai G Z, Jiang C J, Xue D S 2012 J. Appl. Phys. 112 093907

    [24]

    Saito N, Fujiwara H, Sugita Y 1964 J. Phys. Soc. Jpn. 19 421

    [25]

    Gu W J, Pan J, Du W, Hu J G 2011 Acta Phys. Sin. 60 057601(in Chinese)[顾文娟, 潘靖, 杜薇, 胡经国2011物理学报60 057601]

    [26]

    Zhou C, Jiang C J, Zhao Z 2015 J. Phys. D:Appl. Phys. 48 265001

    [27]

    Zhan Q F, Vandezande S, Temst K, Haesendonck C V 2009 New J. Phys. 11 063003

    [28]

    Chen J, Erskine J L 1992 Phys. Rev. Lett. 68 1212

  • [1]

    Yu Y, Zhan Q F, Wei J W, Wang J B, Dai G H, Zuo Z H, Zhang X S, Liu Y W, Yang H L, Zhang Y, Xie S H, Wang B M, Li R W 2015 Appl. Phys. Lett. 106 162405

    [2]

    Li C Y, Chai G Z, Yang C C, Wang W F, Xue D S 2015 Sci. Rep. 5 17023

    [3]

    Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203

    [4]

    Yoo J H, Restorff J B, Wun F M, Flatau A B 2008 J. Appl. Phys. 103 07B325

    [5]

    Acher O, Dubourg S 2008 Phys. Rev. B 77 104440

    [6]

    Perrin G, Acher O, Peuzin J C, Vukadinovic N 1996 J. Magn. Magn. Mater. 157-158 289

    [7]

    Iakubov I T, Lagarkov A N, Maklakov S A, Osipov A V, Rozanov K N, Ryzhikov I A, Starostenko S N 2006 J. Magn. Magn. Mater. 300 e74

    [8]

    Wei J W, Zhu Z T, Feng H M, Du J L, Liu Q F, Wang J B 2015 J. Phys. D:Appl. Phys. 48 465001

    [9]

    Chai G Z, Phuoc N N, Ong C K 2012 Sci. Rep. 2 832

    [10]

    Zhang Z D 2015 Acta Phys. Sin. 64 067503(in Chinese)[张志东2015物理学报64 067503]

    [11]

    Wang G X, Dong C H, Yan Z J, Wang T, Chai G Z, Jiang C J, Xue D S 2013 J. Alloys Compd. 573 118

    [12]

    Zhou C, Wang F L, Wei W W, Wang G X, Jiang C J, Xue D S 2013 J. Phys. D:Appl. Phys. 46 425002

    [13]

    Soh W T, Phuoc N N, Tan C Y, Ong C K 2013 J. Appl. Phys. 114 053908

    [14]

    Singh G, Rout P K, Porwal R, Budhani R C 2012 Appl. Phys. Lett. 101 022411

    [15]

    Chikazumi S 1997 Physics of Ferromagnetism (Vol. 6)(Oxford:Oxford University Press) p451

    [16]

    Chai G Z, Phuoc N N, Ong C K 2013 Appl. Phys. Lett. 103 042412

    [17]

    Zhou C, Wei W W, Jiang C J 2015 Appl. Phys. A. 121 39

    [18]

    Barturen M, Salles B R, Schio P, Milano J, Butera A, Bustingorry S, Ramos C, Oliveira A J A, Eddrief M, Lacaze E, Gendron F, Etgens V H, Marangolo M 2012 Appl. Phys. Lett. 101 092404

    [19]

    Fin S, Tomasello R, Bisero D, Marangolo M, Sacchi M, Popescu H, Eddrief M, Hepbum C, Finocchio G, Carpentieri M, Rettori A, Pini M G, Tacchi S 2015 Phys. Rev. B 92 224411

    [20]

    Sharma P, Kimura H, Inoue A, Arenholz E, Guo J H 2006 Phys. Rev. B 73 052401

    [21]

    álvarez N R, Montalbetti M E V, Gómez J E, Moya R A E, Vicente á M A, Goovaerts E, Butera A 2015 J. Phys. D:Appl. Phys. 48 405003

    [22]

    Yu J, Chang C H, Karns D, Ju G P, Kubota Y, Eppler W, Brucker C, Weller D 2002 J. Appl. Phys. 91 8357

    [23]

    Wang G X, Dong C H, Wang W X, Wang Z L, Chai G Z, Jiang C J, Xue D S 2012 J. Appl. Phys. 112 093907

    [24]

    Saito N, Fujiwara H, Sugita Y 1964 J. Phys. Soc. Jpn. 19 421

    [25]

    Gu W J, Pan J, Du W, Hu J G 2011 Acta Phys. Sin. 60 057601(in Chinese)[顾文娟, 潘靖, 杜薇, 胡经国2011物理学报60 057601]

    [26]

    Zhou C, Jiang C J, Zhao Z 2015 J. Phys. D:Appl. Phys. 48 265001

    [27]

    Zhan Q F, Vandezande S, Temst K, Haesendonck C V 2009 New J. Phys. 11 063003

    [28]

    Chen J, Erskine J L 1992 Phys. Rev. Lett. 68 1212

  • [1] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向. 物理学报, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] 李再东, 南雪萌, 屈川, 刘伍明. 飞秒尺度下的惯性磁化强度动力学. 物理学报, 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [3] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [4] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究. 物理学报, 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [5] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [6] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [7] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [8] 顾文娟, 潘靖, 胡经国. 垂直场下磁性薄膜中的铁磁共振现象. 物理学报, 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [9] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [10] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [11] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [12] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [13] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质. 物理学报, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [14] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究. 物理学报, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [15] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [16] 石 玉, 邢怀中, 张怀武, 荆玉兰, 刘颖力. 磁场诱导的单离子各向异性反铁磁链的比热. 物理学报, 2005, 54(1): 280-283. doi: 10.7498/aps.54.280
    [17] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究. 物理学报, 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [18] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性. 物理学报, 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [19] 毕思云. 柱形畴阵的铁磁共振. 物理学报, 1988, 37(7): 1188-1191. doi: 10.7498/aps.37.1188
    [20] 邝宇平, 翁世浚. 立方晶体铁磁各向异性的自旋波理论. 物理学报, 1964, 20(9): 890-908. doi: 10.7498/aps.20.890
计量
  • 文章访问数:  5297
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2016-08-14
  • 刊出日期:  2016-11-05

/

返回文章
返回