搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒尺度下的惯性磁化强度动力学

李再东 南雪萌 屈川 刘伍明

引用本文:
Citation:

飞秒尺度下的惯性磁化强度动力学

李再东, 南雪萌, 屈川, 刘伍明

Inertial magnetization dynamics on femtosecond scale

Li Zai-Dong, Nan Xue-Meng, Qu Chuan, Liu Wu-Ming
PDF
HTML
导出引用
  • 在亚皮秒到飞秒时间尺度下, 铁磁体中磁化强度的动力学中要考虑惯性效应, 它可以用惯性朗道-利夫希茨-吉尔伯特(inertial Landau-Lifshitz-Gilbert)方程来描述. 本文主要介绍了超快铁磁共振、磁矩翻转和惯性自旋动力学在理论和实验上的一些发展, 这些研究结果将有助于更好地理解超快退磁和翻转的基本机制, 加深对磁惯性微观机制的理解, 揭示未来的实验和理论研究的发展趋势.
    Inertia effect should be considered in ferromagnet magnetization dynamics on a sub picosecond-to-femtosecond-time scale. The inertia effect can be described by the inertial Landau-Lifshitz-Gilbert equation. This paper mainly introduces some theoretical and experimental developments of ultrafast ferromagnetic resonance, magnetization reversal and inertial spin dynamics. These results will be helpful in better understanding the basic mechanism of ultrafast demagnetization and magnetization reversal, and deepen the understanding of the microscopic mechanism of magnetic inertia. In the end, the development trend of future experimental and theoretical research are also presented.
      通信作者: 李再东, lizd@email.tjut.edu.cn ; 刘伍明, wmliu@iphy.ac.cn
    • 基金项目: 量子光学与光量子器件国家重点实验室(山西大学)开放课题资助项目(批准号: KF202203)、国家重点研发计划(批准号: 2021YFA1400900, 2021YFA0718300, 2021YFA1402100)、国家自然科学基金 (批准号: 61835013, 12174461, 12234012)和中国载人航天工程空间应用系统资助的课题.
      Corresponding author: Li Zai-Dong, lizd@email.tjut.edu.cn ; Liu Wu-Ming, wmliu@iphy.ac.cn
    • Funds: Project supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No. KF202203), the National Key R&D Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, 2021YFA1402100), the National Nature Science of China (Grant Nos. 61835013, 12174461, 12234012), and the Space Application System of China Manned Space Program, China.
    [1]

    Sun Z Z, Wang X R 2005 Phys. Rev. B 71 174430Google Scholar

    [2]

    Ciornei M C, Rubí J M, Wegrowe J E 2011 Phys. Rev. B 83 020410(RGoogle Scholar

    [3]

    Fähnle M, Steiauf D, Illg C 2011 Phys. Rev. B 84 172403Google Scholar

    [4]

    Fähnle M, Steiauf D, Illg C 2013 Phys. Rev. B 88 219905Google Scholar

    [5]

    Böttcher D, Henk J 2012 Phys. Rev. B 86 020404(RGoogle Scholar

    [6]

    Bhattacharjee S, Nordström L, Fransson J 2012 Phys. Rev. Lett. 108 057204Google Scholar

    [7]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [8]

    Back C H, Allenspach R, Weber W, Parkin S S P, Weller D, Garwin E L, Siegmann H C 1999 Science 285 864Google Scholar

    [9]

    Tudosa I, Stamm C, Kashuba A B, King F, Siegmann H C, Stöhr J, Ju G, Lu B, Weller D 2004 Nature 428 831Google Scholar

    [10]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [11]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T H 2009 Nat. Phys. 5 727Google Scholar

    [12]

    Mangin S, Gottwald M, Lambert C H, Steil D, Uhlíř V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286Google Scholar

    [13]

    Garanin D A, Kachkachi H 2009 Phys. Rev. B 80 014420Google Scholar

    [14]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [15]

    Kuneš J, Kamberský V 2002 Phys. Rev. B 65 212411Google Scholar

    [16]

    Kamberský V 1976 Czech. J. Phys. B 26 1366Google Scholar

    [17]

    Kamberský V 2007 Phys. Rev. B 76 134416Google Scholar

    [18]

    Brataas A, Tserkovnyak Y, Bauer G E W 2008 Phys. Rev. Lett. 101 037207Google Scholar

    [19]

    Fähnle M, Illg C 2011 J. Phys. Condens. Matter 23 493201Google Scholar

    [20]

    Ebert H, Mankovsky S, Ködderitzsch D, Kelly P J 2011 Phys. Rev. Lett. 107 066603Google Scholar

    [21]

    Mondal R, Berritta M, Oppeneer P M, 2016 Phys. Rev. B 94 144419Google Scholar

    [22]

    Bastardis R, Vernay F, Kachkachi H 2018 Phys. Rev. B 98 165444Google Scholar

    [23]

    Li Y, Bailey W E 2016 Phys. Rev. Lett. 116 117602Google Scholar

    [24]

    Döring W 1948 Z. Naturforsch. A 3 373Google Scholar

    [25]

    De Leeuw F H, Robertson J M 1975 J. Appl. Phys. 46 3182Google Scholar

    [26]

    Zhu J X, Fransson J 2006 J. Phys. Condens. Matter 18 9929Google Scholar

    [27]

    Walker G W 1917 Proc. Roy. Soc. London A 93 442Google Scholar

    [28]

    Wegrowe J E, Ciornei M C 2012 Am. J. Phys. 80 607Google Scholar

    [29]

    Olive E, Lansac Y, Meyer M, Hayoun M, Wegrowe J E 2015 J. Appl. Phys. 117 213904Google Scholar

    [30]

    Wegrowe J E, Olive E 2016 J. Phys. :Condens. Matter 28 106001Google Scholar

    [31]

    Gamaly E G 2011 Phys. Rep. 508 91Google Scholar

    [32]

    Kikuchi T, Tatara G 2015 Phys. Rev. B 92 184410Google Scholar

    [33]

    Thonig D, Eriksson O, Pereiro M 2017 Sci. Rep. 7 931Google Scholar

    [34]

    Acremann Y, Back C H, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H 2000 Science 290 492Google Scholar

    [35]

    Hickey M C, Moodera J S 2009 Phys. Rev. Lett. 102 137601Google Scholar

    [36]

    Widom A, Vittoria C, Yoon S D 2009 Phys. Rev. Lett. 103 239701Google Scholar

    [37]

    Hickey M C 2009 Phys. Rev. Lett. 103 239702Google Scholar

    [38]

    Gilmore K, Idzerda Y U, Stiles M D 2007 Phys. Rev. Lett. 99 027204Google Scholar

    [39]

    Mondal R, Berritta M, Carva K, Oppeneer P M 2015 Phys. Rev. B 91 174415Google Scholar

    [40]

    Mondal R, Berritta M, Nandy A K, Oppeneer P M 2017 Phys. Rev. B 96 024425Google Scholar

    [41]

    Titov S V, Dowling W J, Kalmykov Y P, Cherkasskii M 2022 Phys. Rev. B 105 214414Google Scholar

    [42]

    Li Y, Barra A L, Auffret S, Ebels U, Bailey W E 2015 Phys. Rev. B 92 140413Google Scholar

    [43]

    Eich S, Plötzing M, Rollinger M, Emmerich S, Adam R, Chen C, Kapteyn H C, Murnane M M, Plucinski L, Steil D, Stadtmüller B, Cinchetti M, Aeschlimann M, Schneider C M, Mathias S 2017 Sci. Adv. 3 e1602094Google Scholar

    [44]

    Dornes C, Acremann Y, Savoini M, Kubli M, Neugebauer M J, Abreu E, Huber L, Lantz G, Vaz C A F, Lemke H, Bothschafter E M, Porer M, Esposito V, Rettig L, Buzzi M, Alberca A, Windsor Y W, Beaud P, Staub U, Zhu D, Song S, Glownia J M, Johnson S L 2019 Nature 565 209Google Scholar

    [45]

    Razdolski I, Alekhin A, Ilin N, Meyburg J P, Roddatis V, Diesing D, Bovensiepen U, Melnikov A 2017 Nat. Commun. 8 15007Google Scholar

    [46]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [47]

    Coffey W T, Kalmykov Yu P, Titov S V 2002 Phys. Rev. E 65 032102Google Scholar

    [48]

    Zhang P, Chen G, Wang W, Zhang G, Wang H 2022 Chin. J. Chem. Eng. 46 1Google Scholar

    [49]

    Basu B, Chowdhury D 2013 Ann. Phys. 335 47Google Scholar

    [50]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [51]

    Hofmann M C, Fülöp J A 2011 J. Phys. D:Appl. Phys. 44 083001Google Scholar

    [52]

    Kovalev S, Green B, Golz T, Maehrlein S, Stojanovic N, Fisher A S, Kampfrath T, Gensch M 2017 Struct. Dyn. 4 024301Google Scholar

    [53]

    Kovalev S, Wang Z, Deinert J C, Awari N, Chen M, Green B, Germanskiy S, de Oliveira T V A G, Lee J S, Deac A, Turchinovich D, Stojanovic N, Eisebitt S, Radu I, Bonetti S, Kampfrath T, Gensch M. 2018 J. Phys. D:Appl. Phys. 51 114007Google Scholar

    [54]

    Neeraj K, Awari N, Kovalev S, Polley D, Hagström N Z, Arekapudi S S P K, Semisalova A, Lenz K, Green B, Deinert J C, Ilyakov I, Chen M, Bawatna M, Scalera V, d’Aquino M, Serpico C, Hellwig O, Wegrowe J E, Gensch M, Bonetti S 2021 Nat. Phys. 17 245Google Scholar

    [55]

    Olive E, Lansac Y, Wegrowe J E 2012 Appl. Phys. Lett. 100 192407Google Scholar

    [56]

    Mondal R, Großenbach S, Rózsa L, Nowak U 2021 Phys. Rev. B 103 104404Google Scholar

    [57]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [58]

    Mondal R, Kamra A 2021 Phys. Rev. B 104 214426Google Scholar

    [59]

    Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th, Kimel A V 2011 Nature 472 205Google Scholar

    [60]

    Cheng R, Wu X, Xiao D 2017 Phys. Rev. B 96 054409Google Scholar

    [61]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [62]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. L 85 844Google Scholar

    [63]

    Neeraj K, Pancaldi M, Scalera V, Perna S, d’Aquino M, Serpico C, Bonetti S 2022 Phys. Rev. B 105 054415Google Scholar

    [64]

    Winter L, Großenbach S, Nowak U, Rózsa L 2022 Phys. Rev. B 106 214403Google Scholar

    [65]

    Stöhr J, Siegmann H C 2006 Solid State Sci. 5 236Google Scholar

    [66]

    Serpico C, d’Aquino M, Bertotti G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 5224Google Scholar

    [67]

    d’Aquino M, Scholz W, Schrefl T, Serpico C, Fidler J 2004 J. Appl. Phys. 95 7055Google Scholar

    [68]

    Nozaki Y, Matsuyama K 2006 J. Appl. Phys. 100 053911Google Scholar

    [69]

    Bazaliy Y B 2011 J. Appl. Phys. 110 063920Google Scholar

    [70]

    Dalla Longa F, Kohlhepp J T, de Jonge W J M, Koopmans B 2007 Phys. Rev. B 75 224431Google Scholar

    [71]

    Carpene E, Mancini E, Dallera C, Brenna M, Puppin E, De Silvestri S 2008 Phys. Rev. B 78 174422Google Scholar

    [72]

    Wilks R, Hicken R J, Ali M, Hickey B J, Buchanan J D R, Pym A T G, Tanner B K 2004 J. Appl. Phys. 95 7441Google Scholar

    [73]

    Wilks R, Hughes N D, Hicken R J 2003 J. Phys. Condens. Matter 15 5129Google Scholar

    [74]

    Unikandanunni V, Medapalli R, Asa M, Albisetti E, Petti D, Bertacco R, Fullerton E E, Bonetti S 2022 Phys. Rev. Lett. 129 237201Google Scholar

    [75]

    Nahata A, Auston D H, Heinz T F, Wu C 1996 Appl. Phys. Lett. 68 150Google Scholar

    [76]

    Schumacher H W, Chappert C, Crozat P 2002 J. Appl. Phys. 91 10Google Scholar

    [77]

    Bonetti S, Hoffmann M C, Sher M J, Chen Z, Yang S H, Samant M G, Parkin S S, Dürr H A 2016 Phys. Rev. Lett. 117 087205Google Scholar

    [78]

    Neeraj K, Sharma A, Almeida M, Matthes P, Samad F, Salvan G, Hellwig O, Bonetti S 2022 Appl. Phys. Lett. 120 102406Google Scholar

    [79]

    Alvarez L F, Pla O, Chubykalo O 2000 Phys. Rev. B 61 11613Google Scholar

    [80]

    Laroze D, Bragard J, Suarez O J, Pleiner H 2011 IEEE Trans. Magn. 47 3032Google Scholar

  • 图 1  磁化强度动力学示意图[40] ($ {\boldsymbol{M}} $$ {{\boldsymbol{H}}^{{\text{eff}}}} $周围的进动用蓝色实虚线表示, 章动用红色曲线表示)

    Fig. 1.  Schematic illustration of magnetization dynamics[40] (The precessional motion of $ {\boldsymbol{M}} $ around $ {{\boldsymbol{H}}^{{\text{eff}}}} $ is depicted by the blue solid dashed curve, and the nutationis shown by the red curve).

    图 2  磁化强度分量的时间演化${M_x}/{M_{\text{S}}} = {\sin}\theta {\cos}\varphi $ (黑线), ${M_y}/{M_{\text{S}}} = {\sin}\theta {\cos}\varphi $ (红线)和${M_z}/{M_{\text{S}}} = {\cos}\theta $ (绿线), 对于H = 2 T和${h_ \bot } = 0\;{\text{T}}$ 和任意的初始条件值θ0 = 30°, ${\varphi _0} = {0^{\circ}}$, ${\dot \theta _0} = 0\;{\text{rad/s}}$${\dot \varphi _0} = - 2\sqrt 3 \times {10^{14}}\;{\text{rad/s}}$ (a) 短时间动力学$t < 10\tau $显示了由惯性项引起的章动振荡; (b) 长时间动力学$t \gg \tau $显示了固定应用场周围的进动振荡[55]

    Fig. 2.  Time evolution of the magnetization components ${M_x}/{M_{\text{S}}} = {\sin}\theta {\cos}\varphi $ (black line), ${M_y}/{M_{\text{S}}} = {\sin}\theta {\cos}\varphi $ (red line), and ${M_z}/{M_{\text{S}}} = {\cos}\theta $ (green line) for H = 2 T and ${h_ \bot } = 0 \;{\text{T}}$, and for arbitrary initial conditions ${\theta _0} = {30^{\circ}}$, ${\varphi _0} = {0^{\circ}}$, ${\dot \theta _0} = 0\;{\text{rad/s}}$, and ${\dot \varphi _0} = - 2\sqrt 3 \times {10^{14}}\;{\text{rad/s}}$: (a) Short time dynamics $t < 10\tau $ showing the nutation oscillations due to the inertial term; (b) long time dynamics $t \gg \tau $ showing the precession oscillations around the fixed applied field [55].

    图 3  横向磁化强度率${\chi _ \bot }\left( \omega \right)$相对于振荡场脉冲$\omega $的共振曲线, 观察到两个共振峰, 即低频的铁磁共振和高频的章动共振. 插图为横向磁化率${\chi _ \bot }$的计算实例, 对于ω = 2 × 1011 rad/s 得到$\left\langle {{M_ \bot }} \right\rangle = {\chi _ \bot }{h_ \bot }$[55]

    Fig. 3.  Resonance curve of the transverse susceptibility ${\chi _ \bot }\left( \omega \right)$with respect to the oscillating field pulsation $\omega $. Two resonance peaks are observed: the ferromagnetic resonance at low frequency and the nutation resonance at high frequency. Inset: Example of the calculation of the transverse susceptibility ${\chi _ \bot }$ such that $\left\langle {{M_ \bot }} \right\rangle = {\chi _ \bot }{h_ \bot }$ obtained for $\omega = 2 \times {10^{11}}\;{\text{rad/s}}$[55].

    图 4  惯性弛豫时间$\eta = 0\;{\text{s}}$$\eta = {10^{ - 13}}{\text{s}}$下的自旋泵浦直流电流, 使用的参数是${M_0} = 2{\mu _{\text{B}}}$, $K = {10^{ - 23}}{\text{J}}$, $\gamma = $$ 1.76 \times {10^{11}}\;{{\text{T}}^{ - 1}} \cdot {{\text{s}}^{ - 1}}$, $\alpha = 0.05$, ${H_0} = 1\; {\text{T}}$, $\left| h \right| = {10^{ - 3}}\;{\text{T}}$, $g_{\text{r}}^{ \uparrow \downarrow } = {10^{19}}{{\text{m}}^{ - 2}}$ [58]

    Fig. 4.  The calculated spin pumping dc current for inertial relaxation times $\eta = 0\;{\text{s}}$ and $\eta = {10^{ - 13}}{\text{s}}$. The used parameters are ${M_0} = 2{\mu _{\text{B}}}$, $K = {10^{ - 23}}{\text{J}}$, $\gamma = 1.76 \times {10^{11}}\; {{\text{T}}^{ - 1}} \cdot $$ {{\text{s}}^{ - 1}}$, $\alpha = 0.05$, ${H_0} = 1\;{\text{T}}$, $\left| h \right| = {10^{ - 3}}\; {\text{T}}$, $g_{\text{r}}^{ \uparrow \downarrow } = {10^{19}}{{\text{m}}^{ - 2}}$ [58].

    图 5  对于在章动共振到进动共振处的铁磁体, 自旋电流的比值对惯性弛豫时间$\eta $, 使用的参数是M0 = 2μB, $\gamma = 1.76 \times {10^{11}}\;{{\text{T}}^{ - 1}} \cdot {{\text{s}}^{ - 1}}$, $\alpha = 0.05$, $K = {10^{ - 23}}\;{\text{J}}$${H_0} = $$ 1\;{\text{T}}$ [58]

    Fig. 5.  Ratio of spin current for ferromagnets at the nutation resonance to the precession resonance vs. inertial relaxation time $\eta $, the used parameters are ${M_0} = 2{\mu_{\rm{B}}}$, $\gamma = 1.76 \times {10^{11}}\;{{\text{T}}^{ - 1}} \cdot {{\text{s}}^{ - 1}}$, $\alpha = 0.05$, $K = {10^{ - 23}}\;{\text{J}}$, and ${H_0} = 1\; {\text{T}}$ [58].

    图 6  (a) 正文中描述的数值模拟的球坐标; (b)考虑了薄膜体系的几何结构, 易磁化强度轴沿y方向, 平面内难磁化强度轴沿x方向; (c)通过数值求解ILLG方程得到的不同磁脉冲振幅和 FWHM的磁化强度状态图, 侧边图为主图选定点上的磁化强度进动轨迹, 颜色条显示了模拟结束时磁化强度矢量的y分量, 磁化强度总是从正y方向开始, 即平行于易磁化强度轴排列[63]

    Fig. 6.  (a) Spherical coordinates used for the numerical simulations described in the main text; (b) geometry of the thin film system considered, the easy magnetization axis lies along the y direction, and the in-plane hard magnetization axis is along the x direction; (c) main plot is the magnetization state diagram for different magnetic pulse amplitude and FWHM obtained by numerically solving the ILLG equation, side plots are magnetization precession trajectories in selected points of the diagram. The color bar shows the y component of the magnetization vector at the end of the simulation. The magnetization starts always from the positive y direction, i.e., aligned parallel to the easy magnetization axis[63].

    图 7  使用(a) LLG和(b) ILLG方程计算不同脉冲幅度和FWHM宽度的磁化强度翻转时间, 所有轴和振幅均为对数刻度; (c) 沿图(a)和(b)中黑色虚线所示的对角线切割(即垂直于恒定脉冲能量线)的翻转时间. 垂直虚线两次模拟的弹道翻转区域的边界[63]

    Fig. 7.  Magnetization switching times calculated for different pulse amplitude and FWHM width using (a) the LLG and (b) the ILLG equations. All axes and amplitudes are in logarithmic scale; (c) switching time along the diagonal line cuts (i.e., perpendicular to the lines of constant pulse energy) shown by the black-dashed lines in panels (a) and (b). The dashed vertical lines indicate the boundaries of the ballistic switching region for the two simulations[63].

    图 8  对于一些选定模拟参数, 动力学、势、耗散和沉积能量项的时间演变. 对于2 T振幅和1 ps FWHM的外加磁场的不同能量项的 (a) LLG 和 (b) ILLG 动力学, 即在进动翻转区域中; 对于8 T, 2.1 ps 磁场脉冲的(c) LLG 和 (d) ILLG 能量动力学, 即在弹道翻转区域[63]

    Fig. 8.  Temporal evolution of the kinetic, potential, dissipated, and deposited energy terms for a few selected simulation parameters: (a) LLG and (b) ILLG dynamics of the different energy terms for an applied magnetic field of 2 T amplitude and 1 ps FWHM, i.e., in the precessional switching region; (c) LLG and (d) ILLG energy dynamics for 8 T, 2.1 ps magnetic field pulse, i.e., in the ballistic switching region[63].

    图 9  对于±2 kG的平面外施加场, 典型的TR-MOKE对 (a)线性偏振(LP)光泵浦和(c)右(开圆)和左(全正方形)CP光泵浦的响应; (b) 通过平均图(a)中的曲线获得的对LP泵浦的真实磁化强度响应; (d) 通过对图(c)中相应的右CP曲线和左CP曲线求平均值获得的对右CP泵送(空心圆)和左CP 泵送的真实磁化强度响应; (b)和(d)中的实线使用(15)式拟合数据. 插图: 实验示意图; 倾斜磁化强度与表面法线成角度$\varPhi $; CP泵浦光子携带整个量子的角动量$ \pm \hbar $; 探测脉冲对Mz敏感[70]

    Fig. 9.  Typical TR-MOKE response to (a) linearly polarized (LP) light pumping and (c) right (open circles) and left (full squares) CP light pumping, for an out of plane applied field of ±2 kG; (b) genuine magnetization response to LP pumping obtained by averaging the curves in panel (a); (d) genuine magnetization response to right (open circles) and left (full squares) CP pumping obtained by averaging the corresponding right and left CP curves in panel (c); the solid lines in panels (b) and (d) are fits to the data using Eq. (15). Inset: Schematic representation of the experiment; the canted magnetization forms an angle $\varPhi $ with the normal to the surface; CP pump photons carry a whole quantum of angular momentum $ \pm \hbar $; probe pulses are sensitive to Mz[70].

    图 10  TIMMS测量 SIFE/SOKE峰值后的场依赖信号是由于泵浦螺旋度和强度之间的相关性(线是对眼睛的引导)[70]

    Fig. 10.  TIMMS measurements: the field dependent signal after the SIFE/SOKE peak is due to a correlation between pump helicity and intensity (lines are guides to the eyes) [70].

    图 11  (a) THz泵浦-MOKE探头设置的几何形状; (b) THz泵浦脉冲的频谱; (c)使用纵向MOKE测量的fcc, bcc和hcp钴的磁化强度回路[74]

    Fig. 11.  (a) Geometry of THz pump-MOKE probe setup; (b) frequency spectrum of terahertz pump pulse; (c) magnetization loops for fcc, bcc, and hcp cobalt measured using the longitudinal MOKE[74].

    图 12  实心符号: 在fcc, bcc和hcp钴薄膜上的时间分辨克尔旋转测量. 虚线: 泵浦 THz磁场HTHz的积分. 插图为t > 1.7 ps主要数据的放大图. 为了清晰起见, 数据被垂直移动. 连续线是用(16)式得到的最佳拟合[74]

    Fig. 12.  Solid symbols: time-resolved Kerr rotation measurements on fcc, bcc, and hcp cobalt thin films. Dashed line: integral of the pump THz magnetic field HTHz. Inset: enlarged main panel data for t > 1.7 ps. The data are shifted vertically for clarity. The continuous lines are the best fits obtained using Eq. (16) [74].

    图 13  (a) 符号, 对于不同最大振幅的THz磁场值, 在t > 1.7 ps时的时间分辨克尔信号, 为了清晰起见, 数据被垂直移动. 实线, 使用(16)式得到的最佳拟合. (b)符号, 提取振荡振幅B作为THz磁场和相应的标准差的函数. 虚线, 与施加零偏移量的数据进行线性拟合[74]

    Fig. 13.  (a) Symbols, time-resolved Kerr signal at t > 1.7 ps for THz magnetic field values of different maximum amplitude. The data are vertically shifted for clarity. Solid lines, best fit obtained using Eq. (16). (b) Symbols, extracted oscillation amplitude B as a function of THz magnetic field and corresponding standard deviation. Dashed line, linear fit to the data with imposed zero offset[74].

  • [1]

    Sun Z Z, Wang X R 2005 Phys. Rev. B 71 174430Google Scholar

    [2]

    Ciornei M C, Rubí J M, Wegrowe J E 2011 Phys. Rev. B 83 020410(RGoogle Scholar

    [3]

    Fähnle M, Steiauf D, Illg C 2011 Phys. Rev. B 84 172403Google Scholar

    [4]

    Fähnle M, Steiauf D, Illg C 2013 Phys. Rev. B 88 219905Google Scholar

    [5]

    Böttcher D, Henk J 2012 Phys. Rev. B 86 020404(RGoogle Scholar

    [6]

    Bhattacharjee S, Nordström L, Fransson J 2012 Phys. Rev. Lett. 108 057204Google Scholar

    [7]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G 2011 Nat. Mater. 10 419Google Scholar

    [8]

    Back C H, Allenspach R, Weber W, Parkin S S P, Weller D, Garwin E L, Siegmann H C 1999 Science 285 864Google Scholar

    [9]

    Tudosa I, Stamm C, Kashuba A B, King F, Siegmann H C, Stöhr J, Ju G, Lu B, Weller D 2004 Nature 428 831Google Scholar

    [10]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [11]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T H 2009 Nat. Phys. 5 727Google Scholar

    [12]

    Mangin S, Gottwald M, Lambert C H, Steil D, Uhlíř V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286Google Scholar

    [13]

    Garanin D A, Kachkachi H 2009 Phys. Rev. B 80 014420Google Scholar

    [14]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [15]

    Kuneš J, Kamberský V 2002 Phys. Rev. B 65 212411Google Scholar

    [16]

    Kamberský V 1976 Czech. J. Phys. B 26 1366Google Scholar

    [17]

    Kamberský V 2007 Phys. Rev. B 76 134416Google Scholar

    [18]

    Brataas A, Tserkovnyak Y, Bauer G E W 2008 Phys. Rev. Lett. 101 037207Google Scholar

    [19]

    Fähnle M, Illg C 2011 J. Phys. Condens. Matter 23 493201Google Scholar

    [20]

    Ebert H, Mankovsky S, Ködderitzsch D, Kelly P J 2011 Phys. Rev. Lett. 107 066603Google Scholar

    [21]

    Mondal R, Berritta M, Oppeneer P M, 2016 Phys. Rev. B 94 144419Google Scholar

    [22]

    Bastardis R, Vernay F, Kachkachi H 2018 Phys. Rev. B 98 165444Google Scholar

    [23]

    Li Y, Bailey W E 2016 Phys. Rev. Lett. 116 117602Google Scholar

    [24]

    Döring W 1948 Z. Naturforsch. A 3 373Google Scholar

    [25]

    De Leeuw F H, Robertson J M 1975 J. Appl. Phys. 46 3182Google Scholar

    [26]

    Zhu J X, Fransson J 2006 J. Phys. Condens. Matter 18 9929Google Scholar

    [27]

    Walker G W 1917 Proc. Roy. Soc. London A 93 442Google Scholar

    [28]

    Wegrowe J E, Ciornei M C 2012 Am. J. Phys. 80 607Google Scholar

    [29]

    Olive E, Lansac Y, Meyer M, Hayoun M, Wegrowe J E 2015 J. Appl. Phys. 117 213904Google Scholar

    [30]

    Wegrowe J E, Olive E 2016 J. Phys. :Condens. Matter 28 106001Google Scholar

    [31]

    Gamaly E G 2011 Phys. Rep. 508 91Google Scholar

    [32]

    Kikuchi T, Tatara G 2015 Phys. Rev. B 92 184410Google Scholar

    [33]

    Thonig D, Eriksson O, Pereiro M 2017 Sci. Rep. 7 931Google Scholar

    [34]

    Acremann Y, Back C H, Buess M, Portmann O, Vaterlaus A, Pescia D, Melchior H 2000 Science 290 492Google Scholar

    [35]

    Hickey M C, Moodera J S 2009 Phys. Rev. Lett. 102 137601Google Scholar

    [36]

    Widom A, Vittoria C, Yoon S D 2009 Phys. Rev. Lett. 103 239701Google Scholar

    [37]

    Hickey M C 2009 Phys. Rev. Lett. 103 239702Google Scholar

    [38]

    Gilmore K, Idzerda Y U, Stiles M D 2007 Phys. Rev. Lett. 99 027204Google Scholar

    [39]

    Mondal R, Berritta M, Carva K, Oppeneer P M 2015 Phys. Rev. B 91 174415Google Scholar

    [40]

    Mondal R, Berritta M, Nandy A K, Oppeneer P M 2017 Phys. Rev. B 96 024425Google Scholar

    [41]

    Titov S V, Dowling W J, Kalmykov Y P, Cherkasskii M 2022 Phys. Rev. B 105 214414Google Scholar

    [42]

    Li Y, Barra A L, Auffret S, Ebels U, Bailey W E 2015 Phys. Rev. B 92 140413Google Scholar

    [43]

    Eich S, Plötzing M, Rollinger M, Emmerich S, Adam R, Chen C, Kapteyn H C, Murnane M M, Plucinski L, Steil D, Stadtmüller B, Cinchetti M, Aeschlimann M, Schneider C M, Mathias S 2017 Sci. Adv. 3 e1602094Google Scholar

    [44]

    Dornes C, Acremann Y, Savoini M, Kubli M, Neugebauer M J, Abreu E, Huber L, Lantz G, Vaz C A F, Lemke H, Bothschafter E M, Porer M, Esposito V, Rettig L, Buzzi M, Alberca A, Windsor Y W, Beaud P, Staub U, Zhu D, Song S, Glownia J M, Johnson S L 2019 Nature 565 209Google Scholar

    [45]

    Razdolski I, Alekhin A, Ilin N, Meyburg J P, Roddatis V, Diesing D, Bovensiepen U, Melnikov A 2017 Nat. Commun. 8 15007Google Scholar

    [46]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [47]

    Coffey W T, Kalmykov Yu P, Titov S V 2002 Phys. Rev. E 65 032102Google Scholar

    [48]

    Zhang P, Chen G, Wang W, Zhang G, Wang H 2022 Chin. J. Chem. Eng. 46 1Google Scholar

    [49]

    Basu B, Chowdhury D 2013 Ann. Phys. 335 47Google Scholar

    [50]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [51]

    Hofmann M C, Fülöp J A 2011 J. Phys. D:Appl. Phys. 44 083001Google Scholar

    [52]

    Kovalev S, Green B, Golz T, Maehrlein S, Stojanovic N, Fisher A S, Kampfrath T, Gensch M 2017 Struct. Dyn. 4 024301Google Scholar

    [53]

    Kovalev S, Wang Z, Deinert J C, Awari N, Chen M, Green B, Germanskiy S, de Oliveira T V A G, Lee J S, Deac A, Turchinovich D, Stojanovic N, Eisebitt S, Radu I, Bonetti S, Kampfrath T, Gensch M. 2018 J. Phys. D:Appl. Phys. 51 114007Google Scholar

    [54]

    Neeraj K, Awari N, Kovalev S, Polley D, Hagström N Z, Arekapudi S S P K, Semisalova A, Lenz K, Green B, Deinert J C, Ilyakov I, Chen M, Bawatna M, Scalera V, d’Aquino M, Serpico C, Hellwig O, Wegrowe J E, Gensch M, Bonetti S 2021 Nat. Phys. 17 245Google Scholar

    [55]

    Olive E, Lansac Y, Wegrowe J E 2012 Appl. Phys. Lett. 100 192407Google Scholar

    [56]

    Mondal R, Großenbach S, Rózsa L, Nowak U 2021 Phys. Rev. B 103 104404Google Scholar

    [57]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [58]

    Mondal R, Kamra A 2021 Phys. Rev. B 104 214426Google Scholar

    [59]

    Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th, Kimel A V 2011 Nature 472 205Google Scholar

    [60]

    Cheng R, Wu X, Xiao D 2017 Phys. Rev. B 96 054409Google Scholar

    [61]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [62]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. L 85 844Google Scholar

    [63]

    Neeraj K, Pancaldi M, Scalera V, Perna S, d’Aquino M, Serpico C, Bonetti S 2022 Phys. Rev. B 105 054415Google Scholar

    [64]

    Winter L, Großenbach S, Nowak U, Rózsa L 2022 Phys. Rev. B 106 214403Google Scholar

    [65]

    Stöhr J, Siegmann H C 2006 Solid State Sci. 5 236Google Scholar

    [66]

    Serpico C, d’Aquino M, Bertotti G, Mayergoyz I D 2009 IEEE Trans. Magn. 45 5224Google Scholar

    [67]

    d’Aquino M, Scholz W, Schrefl T, Serpico C, Fidler J 2004 J. Appl. Phys. 95 7055Google Scholar

    [68]

    Nozaki Y, Matsuyama K 2006 J. Appl. Phys. 100 053911Google Scholar

    [69]

    Bazaliy Y B 2011 J. Appl. Phys. 110 063920Google Scholar

    [70]

    Dalla Longa F, Kohlhepp J T, de Jonge W J M, Koopmans B 2007 Phys. Rev. B 75 224431Google Scholar

    [71]

    Carpene E, Mancini E, Dallera C, Brenna M, Puppin E, De Silvestri S 2008 Phys. Rev. B 78 174422Google Scholar

    [72]

    Wilks R, Hicken R J, Ali M, Hickey B J, Buchanan J D R, Pym A T G, Tanner B K 2004 J. Appl. Phys. 95 7441Google Scholar

    [73]

    Wilks R, Hughes N D, Hicken R J 2003 J. Phys. Condens. Matter 15 5129Google Scholar

    [74]

    Unikandanunni V, Medapalli R, Asa M, Albisetti E, Petti D, Bertacco R, Fullerton E E, Bonetti S 2022 Phys. Rev. Lett. 129 237201Google Scholar

    [75]

    Nahata A, Auston D H, Heinz T F, Wu C 1996 Appl. Phys. Lett. 68 150Google Scholar

    [76]

    Schumacher H W, Chappert C, Crozat P 2002 J. Appl. Phys. 91 10Google Scholar

    [77]

    Bonetti S, Hoffmann M C, Sher M J, Chen Z, Yang S H, Samant M G, Parkin S S, Dürr H A 2016 Phys. Rev. Lett. 117 087205Google Scholar

    [78]

    Neeraj K, Sharma A, Almeida M, Matthes P, Samad F, Salvan G, Hellwig O, Bonetti S 2022 Appl. Phys. Lett. 120 102406Google Scholar

    [79]

    Alvarez L F, Pla O, Chubykalo O 2000 Phys. Rev. B 61 11613Google Scholar

    [80]

    Laroze D, Bragard J, Suarez O J, Pleiner H 2011 IEEE Trans. Magn. 47 3032Google Scholar

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向. 物理学报, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [3] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [4] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [5] 李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟. 具有条纹磁畴结构的NiFe薄膜的制备与磁各向异性研究. 物理学报, 2016, 65(21): 217501. doi: 10.7498/aps.65.217501
    [6] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究. 物理学报, 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [7] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [8] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [9] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [10] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [11] 顾文娟, 潘靖, 胡经国. 垂直场下磁性薄膜中的铁磁共振现象. 物理学报, 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [12] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [13] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响. 物理学报, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [14] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [15] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质. 物理学报, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [16] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [17] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究. 物理学报, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [18] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究. 物理学报, 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [19] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性. 物理学报, 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] 毕思云. 柱形畴阵的铁磁共振. 物理学报, 1988, 37(7): 1188-1191. doi: 10.7498/aps.37.1188
计量
  • 文章访问数:  3735
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-05-20

/

返回文章
返回