搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称条形纳磁体的铁磁共振频率和自旋波模式

陈亚博 杨晓阔 危波 吴瞳 刘嘉豪 张明亮 崔焕卿 董丹娜 蔡理

引用本文:
Citation:

非对称条形纳磁体的铁磁共振频率和自旋波模式

陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理

Ferromagnetic resonance frequency and spin wave mode of asymmetric strip nanomagnet

Chen Ya-Bo, Yang Xiao-Kuo, Wei Bo, Wu Tong, Liu Jia-Hao, Zhang Ming-Liang, Cui Huan-Qing, Dong Dan-Na, Cai Li
PDF
HTML
导出引用
  • 通过建立微波激励下的非对称条形多铁纳磁体的微磁模型, 研究了倾斜角和缺陷角对该形纳磁体的铁磁共振谱和自旋波模式的影响. 通过对微磁仿真得到的动态磁化数据进行分析发现, 非对称条形纳磁体倾斜角度增加, 铁磁共振频率随之增加, 而这一现象与纳磁体的缺陷角度无关. 倾斜角不变, 非对称条形纳磁体的铁磁共振频率与缺陷角度呈单调递增关系, 并且不同缺陷角度纳磁体的自旋波模式显示出极大的差异. 非对称条形纳磁体与矩形纳磁体相比, 它的自旋波模式局部化, 具体为非对称条形纳磁体的自旋波模式不对称且高进动区域存在于边缘, 表现为非对称边缘模式. 倾斜角改变导致纳磁体内部退磁场变化, 引起纳磁体边缘模式的移动, 而中心模式对倾斜角的变化并不敏感. 最后, 对建立的模型在高频微波磁场激励下的磁损耗进行了分析, 验证了模型的可靠性. 这些结论说明缺陷角和倾斜角可用于纳磁体自旋波模式和铁磁共振频率的调谐, 所得结果为可调纳磁微波器件的设计提供了重要的理论依据和思路.
    Recently, the operating frequency of nanomagnetic logic device has reached the spin wave frequency of nanomagnets. Therefore, the dynamic magnetic properties of nanomagnets, which are excited by microwave magnetic field, have been explored by many researchers. In this paper, the micro-magnetic model of asymmetric strip nanomagnets under microwave excitation is established. By using the anisotropic stress field (along the x-axis direction) that is generated by a constant voltage and the SINC function microwave magnetic field (along the y-axis direction) to excite the nanomagnets at the same time, the effects of tilt angle and defect angle on the ferromagnetic resonance (FMR) spectrum and spin wave mode of the asymmetric strip nanomagnets are studied. Spectral analysis is performed on the micromagnetic simulation data. Simulation results show that as the tilt angle of the asymmetric strip nanomagnet increases, the ferromagnetic resonance frequency increases. What is more, this phenomenon is independent of the defect angle of the nanomagnet. When the tilt angle is constant, there exists a monotonically increasing relation between the ferromagnetic resonance frequency of the asymmetric strip nanomagnet and the defect angle. The spin wave modes of the nanomagnets differ a lot as defect angle changes. The asymmetric strip nanomagnet is compared with the rectangle nanomagnet, and the spin wave mode of the asymmetric strip nanomagnet is localized. Specifically, the spin wave mode of the asymmetric strip nanomagnets is asymmetric and the high precession region exists at the edge, which is termed asymmetric edge mode. The changes of the tilt angle lead to the changes in the demagnetizing field inside the nanomagnet, which gives rise to the movement of the edge mode. However, the center mode is not sensitive to the change of tilt angle. Finally, the magnetic loss of the model under the excitation of high frequency microwave magnetic field is analyzed and the reliability of the model is verified. These findings indicate that the defect angle and tilt angle can be used to tune the spin wave mode and the ferromagnetic resonance frequency of nanomagnets, and thus providing an important theoretical basis for designing the tunable microwave nanomagnetic devices.
      通信作者: 杨晓阔, yangxk0123@163.com
    • 基金项目: 国家级-国家自然科学基金(11975311)
      Corresponding author: Yang Xiao-Kuo, yangxk0123@163.com
    [1]

    Zhang S L, Zhang J Y, Baker A A, Wang S G, Yu G H, Hesjedal A T 2014 Sci. Rep. 4 6109Google Scholar

    [2]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [3]

    Kudo K, Suto H, Nagasawa T, Mizushima K, Sato R 2015 Appl. Phys. Express 8 103001Google Scholar

    [4]

    Lavrijsen R, Lee J H, Fernández-Pacheco A, Petit D C M C, Mansell R, Cowburn R P 2013 Nature 493 647Google Scholar

    [5]

    杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502Google Scholar

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502Google Scholar

    [6]

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2019 J. Phys. D: Appl. Phys. 52 295001Google Scholar

    [7]

    Eklund A, Bonetti S, Sani S R,, Mohseni S M, Persson J, Chung S J, Banuazizi S A H, Iacocca E, Ostling M, Akerman J, Malm B G 2014 Appl. Phys. Lett. 104 092405Google Scholar

    [8]

    张光富, 张学军, 蒋练军 2016 材料导报: 研究篇 30 148

    Zhang G F, Zhang X J, Jiang L J 2016 Mater. Rep B: Res. 30 148

    [9]

    Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J, Sun N X 2013 Adv. Mater. 25 1435Google Scholar

    [10]

    Zhou Z Y, Peng B, Zhu M M, Liu M 2016 J. Adv. Dielectr. 6 1630005Google Scholar

    [11]

    Suto H, Kanao T, Nagasawa T, Kudo K, Mizushima K, Sato R 2017 Appl. Phys. Lett. 110 262403Google Scholar

    [12]

    Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501Google Scholar

    [13]

    Okamoto S, Kikuchi N, Kato T, Kitakami O, Mitsuzuka K, Shimatsu T, Muraoka H, Aoi H, Lodder J C 2008 J. Magn. Magn. Mater. 320 2874Google Scholar

    [14]

    Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T X, Sun N X, Brown G J 2013 Adv. Mater. 25 4886Google Scholar

    [15]

    Hu X K, Dey H, Liebing N, Csaba G, Orlov A, Bernstein G H, Porod W, Kryzysteczko P, Sievers S, Schumacher H W 2015 IEEE Trans. Magn. 51 3401004Google Scholar

    [16]

    Wei B, Cai L, Yang X K, Li B J, Wang S, Feng C W, Cui H Q, Li C, Liu J H 2018 IEEE. Magn. Lett. 9 3706505

    [17]

    Imre A 2005 Disseration U of Notre Dame 8 803

    [18]

    Liu J H, Yang X K Zhang M L, Wei B, Li C, Dong D N, Li C 2018 IEEE Electron Device Lett. 40 220

    [19]

    顾文娟, 潘靖, 胡经国 2012 物理学报 61 167501Google Scholar

    Gu W J, Pan J, Hu J G 2012 Acta Phys. Sin. 61 167501Google Scholar

    [20]

    Nembach H T, Shaw J M, Silva T J, Johnson W L, Kim S A, Mcmichael R D, Kabos P 2011 Phys. Rev. B 83 094427Google Scholar

    [21]

    Mahato B K, Choudhury S, Mandal R, Barman S, Otani Y, Barman A 2015 J. Appl. Phys 117 213909Google Scholar

    [22]

    Adhikari K, Barman S, Mandal R, Otani Y, Barman A 2018 Phys. Rev. Appl. 10 044010Google Scholar

    [23]

    刘嘉豪, 杨晓阔, 危波, 张明亮, 李闯, 董丹娜 2019 物理学报 68 017501Google Scholar

    Liu J H, Yang X K, Wei B, Li C, Zhang M L, Li C, Dong D N 2019 Acta Phys. Sin. 68 017501Google Scholar

    [24]

    Vacca M, Cairo F, Turvani G, Riente F, Zamboni M, Graziano M 2016 IEEE Trans. Nanotechnol. 15 962Google Scholar

    [25]

    Abeed M A, Atulasimha J, Bandyopadhyay S 2018 J. Phys: Condens. Matter. 30 394001Google Scholar

    [26]

    Melo L, Soares T, Neto O P V 2017 IEEE Trans. Magn. 53 1Google Scholar

    [27]

    Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220Google Scholar

    [28]

    Zhang B, Yang X K, Wang Z C, Zhang M L 2014 Micro Nano Lett. 9 359Google Scholar

    [29]

    Sivasubramani S, Mattela V, Pal C, Acharyya A 2019 Nanotechnology 30 37LT02Google Scholar

    [30]

    Donahue M J, Porter D G 1999 OOMMF User’s Guide, Version 1.0 Interagency Report NISTIR 6376

    [31]

    Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905Google Scholar

    [32]

    D’Souza N, Salehi Fashami M S, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069Google Scholar

    [33]

    危波, 蔡理, 杨晓阔, 李成 2016 物理学报 65 217501Google Scholar

    Wei B, Cai L, Yang X K, Li C 2016 Acta Phys. Sin. 65 217501Google Scholar

    [34]

    Fashami-Salehi M, D’Souza N 2017 J. Magn. Magn. Mater. 438 76Google Scholar

    [35]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201Google Scholar

    [36]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002Google Scholar

    [37]

    杨庆新, 李永建 2016 电工技术学报 31 1Google Scholar

    Yang Q X, Li Y J 2016 Trans. Chin. Electrotechnical Society 31 1Google Scholar

    [38]

    黄文美, 薛胤龙, 王莉, 翁玲, 王博文 2016 电工技术学报 31 173Google Scholar

    Huang W M, Xue Y L, Wang L, Weng L, Wang B W 2016 Trans. Chin. Electrotechnical Society 31 173Google Scholar

    [39]

    郜春艳, 黄文美, 刘卓锟, 曹晓宁 2018 传感技术学报 31 26

    Gao C Y, Huang W M, Liu Z K, Cao X N 2018 Chin. J. Sens. Actuators 31 26

    [40]

    李劲松, 杨庆新, 李永建, 张长庚 2016 高电压技术 42 994

    Li J S, Yang Q X, Li Y J, Zhang C G 2016 High Voltage Engineering 42 994

    [41]

    钟文定 2017 铁磁学 (北京: 科学出版社) 第366页

    Zhong W D 2017 Ferromagnetism (Beijing: Science Press) p366 (in Chinese)

    [42]

    Butterill H J 1948 Nature 161 554

    [43]

    严密, 彭晓领 2006 磁学基础与磁性材料 (杭州: 浙江大学出版社) 第111页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) p111 (in Chinese)

  • 图 1  (a) 微波磁场和应力各向异性场相互垂直激励纳磁体的结构示意图, 此图中纳磁体未倾斜; (b) 纳磁体的俯视图, θ是缺陷角度, φ是纳磁体长轴和y轴之间的倾斜角度

    Fig. 1.  (a) Schematic illustration of nanomagnet excited by perpendicular microwave magnetic field and bias magnetic field, the magnet in this figure is not tilted; (b) top view of nanomagnet, where θ is the defect angle and φ is the tilt angle between y-axis and the long axis of nanomagnets.

    图 2  在室温下, 不同纳磁体(tanθ = 0, 1/6, 2/6, 3/6, 4/6, 5/6)在没有外加磁场激励下的静态自旋方向, 随着缺角的增大非对称条形纳磁体的磁化方向逐渐偏离y

    Fig. 2.  Static spin orientation without external excitation of different nanomagnets (tan θ = 0, 1/6, 2/6, 3/6, 4/6, 5/6) at room temperature. With the increasing of the defect angle, the magnetization direction of the asymmetric strip nanomagnets deviate from the y-axis gradually.

    图 3  纳磁体的归一化的磁化分量mz随外加磁场的激励时间的变化

    Fig. 3.  Normalized magnetization components mz of nanomagnets versus the excitation time of magnetic field applied.

    图 4  不同纳磁体的FMR频率谱和最高吸收峰对应的自旋波模式(tan θ = 0, 1/6, 2/6, 3/6, 4/6, 5/6), 图中的自旋波模式为边缘模式, 红色区域为磁矩的高进动幅值的位置, 蓝色区域为磁矩的低进动幅值的位置

    Fig. 4.  FMR spectra and spin wave modes of different nanomagnets (tan θ = 0, 1/6, 2/6, 3/6, 4/6, 5/6). The spin wave mode in this figure is the edge mode, the red region is the position of the high precession amplitude of the magnetic moment, and the blue region is the position of the low precession amplitude of the magnetic moment.

    图 5  四种纳磁体(矩形, tanθ = 2/6, 4/6, 5/6的三种非对称条形纳磁体)在不同倾斜角度φ下的铁磁共振频率谱, 绿色箭头标记了最高吸收峰

    Fig. 5.  FMR spectra of nanomagnets(tan θ = 0, 2/6, 4/6, 5/6) for different tilt angle φ. The green arrow marks the highest absorption peak.

    图 6  矩形和非对称条形纳磁体(tanθ = 4/6)在不同倾斜角度φ下的自旋波模式. 图的右侧为自旋波模式的进动幅度的色标, 红色区域为磁矩的高进动幅值的位置, 蓝色区域为磁矩的低进动幅值的位置

    Fig. 6.  Spin wave mode of rectangular and asymmetric strip nanomagnets (tanθ = 4/6) at different tilt angle. The color scale for the precession intensity of the spin modes is shown at the right side of the figure, the red region is the position of the high precession amplitude of the magnetic moment, and the blue region is the position of the low precession amplitude of the magnetic moment.

    图 7  纳磁体在高频(15 GHz)交变磁场激励下, 外加磁场在内部作用的效果与纳磁体深度的关系, Hm是外加交变磁场作用在材料内部的磁场幅值, H0为交变磁场的幅值

    Fig. 7.  Under the excitation of high frequency (15 GHz) alternating magnetic field, the relation between the effect of external magnetic field acting on the inside and the depth of the nanomagnet. Hm is the amplitude of the external alternating magnetic field acting on the inside of the material, and H0 is the amplitude of the alternating magnetic field.

  • [1]

    Zhang S L, Zhang J Y, Baker A A, Wang S G, Yu G H, Hesjedal A T 2014 Sci. Rep. 4 6109Google Scholar

    [2]

    Liu J H, Yang X K, Cui H Q, Wei B, Li C, Chen Y B, Zhang M L, Li C, Dong D N 2019 J. Magn. Magn. Mater. 491 165607Google Scholar

    [3]

    Kudo K, Suto H, Nagasawa T, Mizushima K, Sato R 2015 Appl. Phys. Express 8 103001Google Scholar

    [4]

    Lavrijsen R, Lee J H, Fernández-Pacheco A, Petit D C M C, Mansell R, Cowburn R P 2013 Nature 493 647Google Scholar

    [5]

    杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502Google Scholar

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502Google Scholar

    [6]

    Dong D N, Cai L, Li C, Liu B J, Li C, Liu J H 2019 J. Phys. D: Appl. Phys. 52 295001Google Scholar

    [7]

    Eklund A, Bonetti S, Sani S R,, Mohseni S M, Persson J, Chung S J, Banuazizi S A H, Iacocca E, Ostling M, Akerman J, Malm B G 2014 Appl. Phys. Lett. 104 092405Google Scholar

    [8]

    张光富, 张学军, 蒋练军 2016 材料导报: 研究篇 30 148

    Zhang G F, Zhang X J, Jiang L J 2016 Mater. Rep B: Res. 30 148

    [9]

    Liu M, Zhou Z Y, Nan T X, Howe B M, Brown G J, Sun N X 2013 Adv. Mater. 25 1435Google Scholar

    [10]

    Zhou Z Y, Peng B, Zhu M M, Liu M 2016 J. Adv. Dielectr. 6 1630005Google Scholar

    [11]

    Suto H, Kanao T, Nagasawa T, Kudo K, Mizushima K, Sato R 2017 Appl. Phys. Lett. 110 262403Google Scholar

    [12]

    Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501Google Scholar

    [13]

    Okamoto S, Kikuchi N, Kato T, Kitakami O, Mitsuzuka K, Shimatsu T, Muraoka H, Aoi H, Lodder J C 2008 J. Magn. Magn. Mater. 320 2874Google Scholar

    [14]

    Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T X, Sun N X, Brown G J 2013 Adv. Mater. 25 4886Google Scholar

    [15]

    Hu X K, Dey H, Liebing N, Csaba G, Orlov A, Bernstein G H, Porod W, Kryzysteczko P, Sievers S, Schumacher H W 2015 IEEE Trans. Magn. 51 3401004Google Scholar

    [16]

    Wei B, Cai L, Yang X K, Li B J, Wang S, Feng C W, Cui H Q, Li C, Liu J H 2018 IEEE. Magn. Lett. 9 3706505

    [17]

    Imre A 2005 Disseration U of Notre Dame 8 803

    [18]

    Liu J H, Yang X K Zhang M L, Wei B, Li C, Dong D N, Li C 2018 IEEE Electron Device Lett. 40 220

    [19]

    顾文娟, 潘靖, 胡经国 2012 物理学报 61 167501Google Scholar

    Gu W J, Pan J, Hu J G 2012 Acta Phys. Sin. 61 167501Google Scholar

    [20]

    Nembach H T, Shaw J M, Silva T J, Johnson W L, Kim S A, Mcmichael R D, Kabos P 2011 Phys. Rev. B 83 094427Google Scholar

    [21]

    Mahato B K, Choudhury S, Mandal R, Barman S, Otani Y, Barman A 2015 J. Appl. Phys 117 213909Google Scholar

    [22]

    Adhikari K, Barman S, Mandal R, Otani Y, Barman A 2018 Phys. Rev. Appl. 10 044010Google Scholar

    [23]

    刘嘉豪, 杨晓阔, 危波, 张明亮, 李闯, 董丹娜 2019 物理学报 68 017501Google Scholar

    Liu J H, Yang X K, Wei B, Li C, Zhang M L, Li C, Dong D N 2019 Acta Phys. Sin. 68 017501Google Scholar

    [24]

    Vacca M, Cairo F, Turvani G, Riente F, Zamboni M, Graziano M 2016 IEEE Trans. Nanotechnol. 15 962Google Scholar

    [25]

    Abeed M A, Atulasimha J, Bandyopadhyay S 2018 J. Phys: Condens. Matter. 30 394001Google Scholar

    [26]

    Melo L, Soares T, Neto O P V 2017 IEEE Trans. Magn. 53 1Google Scholar

    [27]

    Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220Google Scholar

    [28]

    Zhang B, Yang X K, Wang Z C, Zhang M L 2014 Micro Nano Lett. 9 359Google Scholar

    [29]

    Sivasubramani S, Mattela V, Pal C, Acharyya A 2019 Nanotechnology 30 37LT02Google Scholar

    [30]

    Donahue M J, Porter D G 1999 OOMMF User’s Guide, Version 1.0 Interagency Report NISTIR 6376

    [31]

    Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905Google Scholar

    [32]

    D’Souza N, Salehi Fashami M S, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069Google Scholar

    [33]

    危波, 蔡理, 杨晓阔, 李成 2016 物理学报 65 217501Google Scholar

    Wei B, Cai L, Yang X K, Li C 2016 Acta Phys. Sin. 65 217501Google Scholar

    [34]

    Fashami-Salehi M, D’Souza N 2017 J. Magn. Magn. Mater. 438 76Google Scholar

    [35]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201Google Scholar

    [36]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002Google Scholar

    [37]

    杨庆新, 李永建 2016 电工技术学报 31 1Google Scholar

    Yang Q X, Li Y J 2016 Trans. Chin. Electrotechnical Society 31 1Google Scholar

    [38]

    黄文美, 薛胤龙, 王莉, 翁玲, 王博文 2016 电工技术学报 31 173Google Scholar

    Huang W M, Xue Y L, Wang L, Weng L, Wang B W 2016 Trans. Chin. Electrotechnical Society 31 173Google Scholar

    [39]

    郜春艳, 黄文美, 刘卓锟, 曹晓宁 2018 传感技术学报 31 26

    Gao C Y, Huang W M, Liu Z K, Cao X N 2018 Chin. J. Sens. Actuators 31 26

    [40]

    李劲松, 杨庆新, 李永建, 张长庚 2016 高电压技术 42 994

    Li J S, Yang Q X, Li Y J, Zhang C G 2016 High Voltage Engineering 42 994

    [41]

    钟文定 2017 铁磁学 (北京: 科学出版社) 第366页

    Zhong W D 2017 Ferromagnetism (Beijing: Science Press) p366 (in Chinese)

    [42]

    Butterill H J 1948 Nature 161 554

    [43]

    严密, 彭晓领 2006 磁学基础与磁性材料 (杭州: 浙江大学出版社) 第111页

    Yan M, Peng X L 2006 Fundamentals of Magnetism and Magnetic Materials (Hangzhou: Zhejiang University Press) p111 (in Chinese)

  • [1] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向. 物理学报, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] 李再东, 南雪萌, 屈川, 刘伍明. 飞秒尺度下的惯性磁化强度动力学. 物理学报, 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [3] 强进, 何开宙, 刘东妮, 卢启海, 韩根亮, 宋玉哲, 王向谦. 三角形结构中磁涡旋自旋波模式的研究. 物理学报, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [4] 王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯. 基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究. 物理学报, 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [5] 李金财, 詹清峰, 潘民杰, 刘鲁萍, 杨华礼, 谢亚丽, 谢淑红, 李润伟. 具有条纹磁畴结构的NiFe薄膜的制备与磁各向异性研究. 物理学报, 2016, 65(21): 217501. doi: 10.7498/aps.65.217501
    [6] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [7] 涂宽, 韩满贵. 磁性多孔纳米片微波磁导率的微磁学研究. 物理学报, 2015, 64(23): 237501. doi: 10.7498/aps.64.237501
    [8] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [9] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [10] 顾文娟, 潘靖, 胡经国. 垂直场下磁性薄膜中的铁磁共振现象. 物理学报, 2012, 61(16): 167501. doi: 10.7498/aps.61.167501
    [11] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [12] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [13] 杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究. 物理学报, 2009, 58(9): 6141-6145. doi: 10.7498/aps.58.6141
    [14] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质. 物理学报, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [15] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [16] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [17] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究. 物理学报, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [18] 杜 军, 孙 亮, 盛雯婷, 游 彪, 鹿 牧, 胡 安, M. M. Corte-Real, J. Q. Xiao. 纳米复合Fe-R-O(R=Hf Nd Dy)薄膜面内铁磁共振研究. 物理学报, 2004, 53(7): 2352-2356. doi: 10.7498/aps.53.2352
    [19] 侯碧辉, 刘凤艳, 郭慧群. 磁共振法研究(Fe1-xCox)84Zr3.5Nb 3.5B8Cu1纳米晶薄带的磁各向异性. 物理学报, 2003, 52(10): 2622-2626. doi: 10.7498/aps.52.2622
    [20] 蒲富恪, 郑庆祺. 自旋波之间的散射对铁磁共振曲线的影响. 物理学报, 1962, 18(2): 81-90. doi: 10.7498/aps.18.81
计量
  • 文章访问数:  7041
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 修回日期:  2019-12-23
  • 刊出日期:  2020-03-05

/

返回文章
返回