搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合饱和非线性薛定谔方程的多极矢量孤子

温嘉美 薄文博 温学坤 戴朝卿

引用本文:
Citation:

耦合饱和非线性薛定谔方程的多极矢量孤子

温嘉美, 薄文博, 温学坤, 戴朝卿

Multipole vector solitons in coupled nonlinear Schrödinger equation with saturable nonlinearity

Wen Jia-Mei, Bo Wen-Bo, Wen Xue-Kun, Dai Chao-Qing
PDF
HTML
导出引用
  • 本文构造了耦合自散焦饱和非线性薛定谔方程, 通过改变势函数参数再利用功率守恒的平方算符法, 得到偶极-偶极、三极-偶极以及偶极-三极矢量孤子解. 随着孤子功率的增大, 这3类矢量孤子均能存在, 它们的存在性明显受到势函数的调制. 本文给出了3类矢量孤子由势函数调制的存在区域. 3类矢量孤子的稳定区域受每个分量的孤子功率调制. 随着两分量孤子功率的增大, 3类矢量孤子的稳定域均逐渐扩大. 当饱和非线性强度增大时, 三极-偶极和偶极-三极矢量孤子由稳定状态到不稳定状态临界点对应的孤子功率值逐渐降低. 而偶极-偶极矢量孤子由稳定状态到不稳定状态临界点对应的孤子功率值并不会因为饱和非线性强度增大而变化.
    We construct the coupled self-defocusing saturated nonlinear Schrödinger equation and obtain the dipole-dipole, tripole-dipole and dipole-tripole vector soliton solutions by changing the potential function parameters and using the square operator method of power conservation. With the increase of soliton power, the dipole-dipole, tripole-dipole and dipole-tripole vector solitons can all exist. The existence of the three kinds of vector solitons is obviously modulated by the potential function. The existence domain of three kinds of vector solitons, modulated by the potential function, is given in this work. The stability domains of three vector solitons are modulated by the soliton power of each component. The stability regions of three kinds of vector solitons expand with the increase of the power of two-component soliton. With the increase of saturation nonlinear strength, the power values of the tripole-dipole and dipole-tripole vector solitons at the critical points from stable state to unstable state decrease gradually, and yet the power of the soliton at the critical point from the stable state to the unstable state does not change.
      通信作者: 戴朝卿, dcq424@126.com
    • 基金项目: 国家自然科学基金(批准号: 12075210)、浙江省自然科学基金(批准号: LR20A050001)、浙江农林大学科研发展基金(批准号: 2021FR0009)和浙江农林大学国家级创新创业计划(批准号: 202210341038)资助的课题.
      Corresponding author: Dai Chao-Qing, dcq424@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075210), the Zhejiang Provincial Natural Science Foundation of China ( Grant No. LR20A050001 ), the Scientific Research and Developed Fund of Zhejiang A&F University, China (Grant No. 2021FR0009), and the National Training Programs of Innovation and Entrepreneurship for Undergraduates of China (Grant No. 202210341038).
    [1]

    Wang T Y, Zhou Q, Liu W J 2022 Chin. Phys. B 31 020501Google Scholar

    [2]

    Yan Y Y, Liu W J 2021 Chin. Phys. Lett. 38 094201Google Scholar

    [3]

    Wang H, Li X, Zhou Q, Liu W 2023 Chaos Soliton. Fract. 166 112924Google Scholar

    [4]

    Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81Google Scholar

    [5]

    Cao Q H, Dai C Q 2021 Chin. Phys. Lett. 38 090501Google Scholar

    [6]

    Bo M X, Tian H P, Li Z H, Zhou G S 2002 J. Quantum 31 030006

    [7]

    Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L, Dong C H 2018 Nat. Commun. 9 1797Google Scholar

    [8]

    Su S W, Gou S C, Chew L Y, Chang Y Y, Liao W T 2017 Phys. Rev. A 95 061805Google Scholar

    [9]

    Xie J, Zhu X, He Y 2019 Nonlinear Dyn. 97 1287Google Scholar

    [10]

    Christodoulides N D, Joseph I R 1988 Opt. Lett. 13 53Google Scholar

    [11]

    Desyatnikov A S, Kivshar Y S 2001 Phys. Rev. Lett. 87 033901Google Scholar

    [12]

    Yang J, De P 2003 Phys. Rev. E 67 016608Google Scholar

    [13]

    Kartashov Y V, Zelenina A S, Vysloukh V A, Torner L 2004 Phys. Rev. E 70 066623Google Scholar

    [14]

    Xu Z, Kartashov Y V, Torner L 2006 Phys. Rev. E 73 055601

    [15]

    Kartashov Y V, Torner L, Vysloukh V, Mihalache D 2006 Opt. Lett. 31 1483Google Scholar

    [16]

    Wang R R, Wang Y Y, Dai C Q 2022 Optik 254 168639Google Scholar

    [17]

    Bo W B, Liu W, Wang Y Y 2022 Optik 255 168697Google Scholar

    [18]

    Kartashov Y V 2013 Opt. Lett. 38 2600Google Scholar

    [19]

    Bo W B, Wang R R, Fang Y, Wang Y Y, Dai C Q 2022 Nonlinear Dyn. 111 1577Google Scholar

    [20]

    Zhu X, He Y 2018 Opt. Express 26 26511Google Scholar

    [21]

    Yang J, Lakoba T I 2007 Stud. Appl. Math. 118 153

    [22]

    Li P F, Mihalache D, Malomed, A. B 2018 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376 2124

    [23]

    Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247Google Scholar

  • 图 1  (a) ${x_0} = 1.5$时势函数图像. 分量${\psi _1}\left( {x, z} \right)$孤子功率${P_1}$与两分量传播常数${b_{1, 2}}$的关系 (b) ${x_0} = 1.7$时偶极-偶极矢量孤子; (c) ${x_0} = 1.6$时三极-偶极矢量孤子; (d) ${x_0} = 1.5$时偶极-三极矢量孤子. 其他参数为${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${P_2} = 3.3$

    Fig. 1.  (a) Time potential function image when ${x_0} = 1.5$. The relation between the power of component ${\psi _1}\left( {x, z} \right)$ and the propagation constant ${b_{1, 2}}$: (b) dipole - dipole vector soliton when ${x_0} = 1.7$; (c) tripole-dipole vector solito when ${x_0} = 1.6$; (d) dipole-tripole vector soliton when ${x_0} = 1.5$. Other parameters are ${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${P_2} = 3.3$.

    图 2  (a) ${x_0} = 1.7$时偶极-偶极矢量孤子剖面; (b) ${x_0} = 1.6$时三极-偶极矢量孤子剖面; (c) ${x_0} = 1.5$时偶极-三极矢量孤子剖面. 其他参数为${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${P_1} = 1.5$, ${P_2} = 3.3$

    Fig. 2.  (a) The profile of dipole-dipole vector soliton when ${x_0} = 1.7$; (b) the profile of tripole-dipole vector soliton when ${x_0} = 1.6$; (c) the profile of dipole-tripole vector soliton when ${x_0} = 1.5$. Other parameters are ${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${P_1} = 1.5$ and ${P_2} = 3.3$.

    图 3  由势函数参数${V_0}$, ${x_0}$共同调制的(a)偶极-偶极、(b)三极-偶极、(c)偶极-三极孤子存在域. 其他参数为$S = 1$, $\sigma = - 1$, ${w_0} = 1.1$, ${P_1} = 1.5$, ${P_2} = 3.3$

    Fig. 3.  Existence modulated by the potential parameters ${V_0}$ and ${x_0}$ of (a) dipole-dipole, (b) tripole-dipole and (c) dipole-tripole solitons. Other parameters are $S = 1$, $\sigma = - 1$, ${w_0} = 1.1$, ${P_1} = 1.5$, ${P_2} = 3.3$.

    图 4  (a)偶极-偶极、(b)三极-偶极和(c)偶极-三极孤子的两分量孤子功率${P_1}$, ${P_2}$共同调制的矢量孤子稳定域. 参数为${V_0} = 2.8$, ${w_0} = 1.1$, $ S = 1 $, $\sigma = - 1$, ${x_0} = 1.7 $—1.5

    Fig. 4.  Stability modulated by the two-component power ${P_1}$ and ${P_2}$ of (a) dipole-dipole, (b) tripole-dipole and (c) dipole-tripole solitons. Parameters are ${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${x_0} = 1.7 $ to 1.5.

    图 5  不同饱和非线性强度$S$和功率${P_1}$值的 (a)偶极-偶极、(b)三极-偶极和 (c)偶极-三极矢量孤子的最大不稳定增长率${\text{Max}}{\delta _{\rm{r}}}$. 参数为${P_2} = 3$, ${V_0} = 2.8$, ${w_0} = 1.1$, $\sigma = - 1$, ${x_0} = 1.7 $—1.5

    Fig. 5.  The maximum unstable growth rate ${\text{Max}}{\delta _{\rm{r}}}$of (a) dipole-dipole, (b) tripole-dipole and (c) dipole-tripole vector solitons with different saturated nonlinear strengths $S$ and power values ${P_1}$. Parameters are ${P_2} = 3$, ${V_0} = 2.8$, ${w_0} = 1.1$, $\sigma = - 1$, ${x_0} = 1.7 $ to 1.5.

    图 6  动力学演化图像及相应的特征谱图像 (a), (b)偶极-偶极矢量孤子(${P_1} = 1, {P_2} = 3$); (c), (d)三极-偶极矢量孤子(${P_1} = $$ 1.5, {P_2} = 3$); (e), (f)偶极-三极矢量孤子(${P_1} = 1, {P_2} = 3$). 参数为${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${x_0} = 1.7 $—1.5

    Fig. 6.  Dynamic evolution image and corresponding characteristic spectrum image: (a), (b) Dipole-dipole vector solitons with${P_1} = 1, {P_2} = 3$; (c), (d) tripole-dipole vector soliton with${P_1} = 1.5, {P_2} = 3$; (e), (f) dipole-tripole vector solitons with${P_1} = 1, {P_2} = 3$. Parameters are ${V_0} = 2.8$, ${w_0} = 1.1$, $S = 1$, $\sigma = - 1$, ${x_0} = 1.7$ to 1.5.

  • [1]

    Wang T Y, Zhou Q, Liu W J 2022 Chin. Phys. B 31 020501Google Scholar

    [2]

    Yan Y Y, Liu W J 2021 Chin. Phys. Lett. 38 094201Google Scholar

    [3]

    Wang H, Li X, Zhou Q, Liu W 2023 Chaos Soliton. Fract. 166 112924Google Scholar

    [4]

    Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81Google Scholar

    [5]

    Cao Q H, Dai C Q 2021 Chin. Phys. Lett. 38 090501Google Scholar

    [6]

    Bo M X, Tian H P, Li Z H, Zhou G S 2002 J. Quantum 31 030006

    [7]

    Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L, Dong C H 2018 Nat. Commun. 9 1797Google Scholar

    [8]

    Su S W, Gou S C, Chew L Y, Chang Y Y, Liao W T 2017 Phys. Rev. A 95 061805Google Scholar

    [9]

    Xie J, Zhu X, He Y 2019 Nonlinear Dyn. 97 1287Google Scholar

    [10]

    Christodoulides N D, Joseph I R 1988 Opt. Lett. 13 53Google Scholar

    [11]

    Desyatnikov A S, Kivshar Y S 2001 Phys. Rev. Lett. 87 033901Google Scholar

    [12]

    Yang J, De P 2003 Phys. Rev. E 67 016608Google Scholar

    [13]

    Kartashov Y V, Zelenina A S, Vysloukh V A, Torner L 2004 Phys. Rev. E 70 066623Google Scholar

    [14]

    Xu Z, Kartashov Y V, Torner L 2006 Phys. Rev. E 73 055601

    [15]

    Kartashov Y V, Torner L, Vysloukh V, Mihalache D 2006 Opt. Lett. 31 1483Google Scholar

    [16]

    Wang R R, Wang Y Y, Dai C Q 2022 Optik 254 168639Google Scholar

    [17]

    Bo W B, Liu W, Wang Y Y 2022 Optik 255 168697Google Scholar

    [18]

    Kartashov Y V 2013 Opt. Lett. 38 2600Google Scholar

    [19]

    Bo W B, Wang R R, Fang Y, Wang Y Y, Dai C Q 2022 Nonlinear Dyn. 111 1577Google Scholar

    [20]

    Zhu X, He Y 2018 Opt. Express 26 26511Google Scholar

    [21]

    Yang J, Lakoba T I 2007 Stud. Appl. Math. 118 153

    [22]

    Li P F, Mihalache D, Malomed, A. B 2018 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376 2124

    [23]

    Kartashov Y V, Malomed B A, Torner L 2011 Rev. Mod. Phys. 83 247Google Scholar

  • [1] 饶继光, 陈生安, 吴昭君, 贺劲松. 空间位移$\mathcal{PT}$对称非局域非线性薛定谔方程的高阶怪波解. 物理学报, 2023, 72(10): 104204. doi: 10.7498/aps.72.20222298
    [2] 公睿智, 王灯山. 散焦型非线性薛定谔方程的Whitham调制理论及其间断初值问题解的分类和演化. 物理学报, 2023, 72(10): 100503. doi: 10.7498/aps.72.20230172
    [3] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制. 物理学报, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [4] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [5] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变. 物理学报, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [6] 乔海龙, 贾维国, 王旭东, 刘宝林, 门克内木乐, 杨军, 张俊萍. 拉曼增益对双折射光纤中孤子传输特性的影响. 物理学报, 2014, 63(9): 094208. doi: 10.7498/aps.63.094208
    [7] 李磐, 时雷, 毛庆和. 耦合广义非线性薛定谔方程的相互作用表象龙格库塔算法及其误差分析. 物理学报, 2013, 62(15): 154205. doi: 10.7498/aps.62.154205
    [8] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播. 物理学报, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [9] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究. 物理学报, 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [10] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析. 物理学报, 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [11] 邓一鑫, 涂成厚, 吕福云. 非线性偏振旋转锁模自相似脉冲光纤激光器的研究. 物理学报, 2009, 58(5): 3173-3178. doi: 10.7498/aps.58.3173
    [12] 程雪苹, 林 机, 王志平. 微扰的耦合非线性薛定谔方程的近似求解. 物理学报, 2007, 56(6): 3031-3038. doi: 10.7498/aps.56.3031
    [13] 黄春福, 郭 儒, 刘思敏. 饱和对数非线性介质中非相干孤子碰撞对相干性的改善. 物理学报, 2006, 55(3): 1218-1223. doi: 10.7498/aps.55.1218
    [14] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解. 物理学报, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [15] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程. 物理学报, 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [16] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索. 物理学报, 2004, 53(11): 3652-3656. doi: 10.7498/aps.53.3652
    [17] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子. 物理学报, 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
    [18] 唐永林, 李大义, 陈建国, 康 俊. 对数型折射率饱和非线性介质中光孤子高斯型呼吸模式. 物理学报, 1999, 48(7): 1248-1253. doi: 10.7498/aps.48.1248
    [19] 闫珂柱, 谭维翰. 简谐势阱中中性原子非线性薛定谔方程的定态解. 物理学报, 1999, 48(7): 1185-1191. doi: 10.7498/aps.48.1185
    [20] 田 强, 马本堃. 用非线性薛定谔方程讨论超晶格中畴的运动. 物理学报, 1999, 48(11): 2125-2130. doi: 10.7498/aps.48.2125
计量
  • 文章访问数:  3589
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 修回日期:  2022-12-23
  • 上网日期:  2022-12-29
  • 刊出日期:  2023-05-20

/

返回文章
返回