-
为满足日盲紫外通信等前沿应用对高性能光电探测器的迫切需求,本文设计并实现了一种基于背入射结构的全透明β-Ga2O3日盲光电探测器.该器件采用射频磁控溅射技术在双面抛光蓝宝石衬底上外延生长高质量β-Ga2O3薄膜,并构筑了能够与n型Ga2O3形成高效准欧姆接触的氧化铟锡(ITO)叉指电极.该结构的核心优势在于利用双抛蓝宝石衬底在深紫外波段的高透过率,使入射光子绕开紫外区吸收显著的ITO电极,彻底规避了传统正入射模式中由电极遮蔽效应所导致的光子损失.得益于此,器件展现出卓越的光电性能,如高响应度、高探测率与优异的紫外/可见光抑制比.在此高性能探测器平台基础上,我们进一步发掘了该器件的多功能应用潜力.基于β-Ga2O3单斜晶系的本征晶格各向异性,构建偏振探测实验系统,器件表现出显著的偏振光敏特性.同时,我们成功搭建了非视距(NLOS)紫外通信演示系统,验证了其在复杂信道下进行高保真信息传输的可行性.本研究为构建兼具高灵敏度与偏振分辨、非视距通信能力的新一代Ga2O3基光电器件提供了有效的物理思路和实验依据,在安全通信、偏振成像等领域展现出广阔的应用前景.To meet the urgent demand for high-performance photodetectors in emerging solar-blind ultraviolet communication applications, this study systematically designed and implemented a fully transparent β-Ga2O3 solarblind photodetector based on a back-illumination architecture. The device was fabricated using RF magnetron sputtering to epitaxially grow highquality β-Ga2O3 films (~300 nm thickness, bandgap ~4.98 ± 0.05 eV) on double-polished sapphire substrates, with indium tin oxide (ITO) interdigitated electrodes forming efficient quasi-Ohmic contacts with ntype Ga2O3. The core advantage of this design lies in exploiting the high deep-UV transmittance of double-polished sapphire substrates, enabling incident photons to completely bypass the UV-absorbing ITO electrodes and eliminate photon loss caused by electrode shadowing effects in conventional front-illumination configurations. Consequently, the device demonstrates exceptional optoelectronic performance: a maximum responsivity of 0.46 A/W corresponding to an external quantum efficiency of 222.4%, an outstanding UV/visible rejection ratio of 1.2×104, a minimum noise equivalent power of 1.52 pW/Hz1/2, and a peak specific detectivity of 1.39×1011 Jones, with fast response times of 24 μs (rise) and 1.24 ms (decay). Building upon this high-performance detector platform, we further explored its multifunctional application potential by constructing polarization detection systems that exploit the intrinsic lattice anisotropy of monoclinic β-Ga2O3, and successfully demonstrating a nonline-of-sight (NLOS) UV communication system that validates highfidelity information transmission in complex scattering channels. This research provides effective physical insights and experimental foundations for developing next-generation Ga2O3-based optoelectronic devices with integrated high sensitivity, polarization resolution, and NLOS communication capabilities, showing promising applications in secure communications and polarization imaging.
-
Keywords:
- Gallium oxide /
- Solar‑blind photodetector /
- Polarization detection /
- Non‑line‑of‑sight solar‑blind UV communication
-
[1] Guo L, Guo Y N, Wang J X, Wei T B 2021 J. Semicond. 42 081801
[2] Kalra A, Muazzam U U, Muralidharan R., Raghavan S, Nath D N 2022 J. Appl. Phys. 131 150901
[3] Xu Z Y, Sadler M 2008 IEEE Commun. Mag. 46 67
[4] Tan Y F, Qiao Q, Zhao T G, Chang S L, Zhang Z F, Zang J H, Lin C N, Shang Y Y, Yang X, Zhou J W, Yu X, Yu X M, Shan C X 2024 Journal of Materials Science & Technology 190 200
[5] Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z G, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y, Hao J H 2023 Nat. Commun. 14 418
[6] Zhang H C, Liang F Z, Yang L, Gao Z X, Liang K, Liu S, Ye Y K, Yu H B, Chen W, Kang Y, Sun H D 2024 Adv. Mater. 36 2405874
[7] Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lv H B, Liu Q, Liu M 2019 Chin. Phys. B 28 018501 018501
[8] Hu Z G, Cheng Q, Zhang T, Zhang Y X, Tian X S, Zhang Y C, Feng Q, Xing W, Ning J, Zhang C F, Zhang J C, Hao Y 2023 J. Lumin. 255 119596
[9] Yang H R, Cheng T H, Xin Q, Liu Y Y, Feng H Y, Luo F, Mu W X, Jia Z T, Tao X T 2023 ACS Appl. Mater. Interfaces 15 32561
[10] Nie Y J, Jiao S J, Yang S, Zhao Y, Gao S Y, Wang D B, Yang X, Li Y F, Fu Z D, Li A M, Wang J Z, Zhao L C 2025 Small 21 2501442
[11] Kuang D, Xu S, Shi D, Guo J, Yu Z 2023 Acta Phys. Sin. 72 038501 (in Chinese)[况丹, 徐爽, 史大为, 郭建, 喻志农 2021 物理学报 71 038501]
[12] Zhang Q Y, Dong D M, Zhang T, Zhou T H, Yang Y T, Tang Y J, Shen J Y, Wang T J, Bian T Y, Zhang F, Luo W, Zhang Y, Wu Z P 2023 ACS Nano 17 24033
[13] Lu Y, Miranda C, Tang X, Liu Z Y, Khandelwal V, Krishna S, Li X H 2025 Adv. Mater. 37 2406902
[14] Dong D M, Peng M, Zhang T, Zhang S C, Ma X T, Tang Y J, Cao Y L, Zhang Q Y, Zhang F, Zhang Y, Wu Z P 2025 ACS Photon. 12 3653
[15] Wang Y F, Fu S H, Han Y R, Gao C, Fu R P, Wu Z, Cui W Z, Li B S, Shen A D, Liu Y C 2025 Small 21 e2406989
[16] Chen W C, Xu X Y, Li M H, Kuang S L, Zhang K H, Cheng Q J 2023 Adv. Opt. Mater. 11 2202847
[17] Dang X M, Jiao T, Chen P R, Yu H, Han Y, Li Z, Li Y H, Dong X 2024 Chinese Journal of Luminescence 45 476
[18] Yan S Q, Jiao T, Ding Z J, Zhou X Y, Ji X Q, Dong X, Zhang J W, Xin Q, Song A M 2023 Adv. Electron. Mater. 9 2300297
[19] Labed M, Park B I, Kim J, Park J H, Min J Y, Hwang H J, Kim J, Rim Y S 2024 ACS Nano 18 6558
[20] Cui M, Xu Y, Sun X Y, Wang Z P, Gong H H, Chen X H, Hu T C, Zhang Y J, Ren F F, Gu S L, Ye J D, Zhang R 2022 J. Phys. D:Appl. Phys. 55 394003
[21] Shen G H, Liu Z, Zhang M L, Guo Y F, Tang W H 2023 IEEE Electron Device Lett. 44 1140
[22] Shen G H, Liu Z, Tan C K, Jiang M M, Li S, Guo Y F, Tang W H 2023 Appl. Phys. Lett. 123 041103
[23] Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302 (in Chinese)[董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302]
[24] Wang L X, Liu Y T, Shi F Y, Qi X W, Shen H, Song Y L, Fang Y 2023 Acta Phys. Sin. 72 214202(in Chinese)[王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇 2023 物理学报 72 214202]
[25] Zhang Y Q, Wang Y F, Fu R P, Ma J G, Xu H Y, Li B S, Liu Y C 2022 J. Phys. D:Appl. Phys. 55 324002
[26] Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G, Tang W H 2018 Opt. Mater. Express 8 2918
[27] Zhang Y, Liu R W, Zhang J Y, Jiao B B, Wang R Z 2024 Acta Phys. Sin. 73 098501 (in Chinese)[张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志, 2024 物理学报 73 098501]
[28] Kananen B. E., Giles N. C., Halliburton L E, Foundos G K, Chang K B, Stevens K T 2017 J. Appl. Phys. 122 215703
[29] McCluskey M D 2020 J. Appl. Phys. 127 2002230
[30] Neal A T, Mou S, Rafique S, Zhao H P, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N, Chabak K D, Jessen G H 2018 Appl. Phys. Lett. 113 062101
[31] Liu H W, Zhou S R, Zhang H, Ye L J, Xiong Y Q, Yu P, Li W J, Yang X, Li H L, Kong C Y 2022 J. Phys. D:Appl. Phys. 55 305104
[32] Xu Y H, Fan W H, Wang C 2025 Acta Phys. Sin. 74 028104 (in Chinese)[许怡红,范伟航, 王尘 2025 物理学报 74 028104]
[33] Huan Y W, Sun S M, Gu C J, Liu W J, Ding S J, Yu H Y, Xia C T, Zhang D W 2018 Nanoscale Res. Lett. 13 246
[34] Musztyfaga S M, Gawlinska N K, Socha R, Panek P 2023 Materials (Basel) 16 1363
[35] Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501(in Chinese)[刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 028104]
[36] Zhang Y H, Liang H L, Xing F, Gao Q Q, Feng Y, Sun Y P, Mei Z X 2024 Sci. China Phys., Mech. Astron. 67 247312
[37] Zhang G, Wang Z Y, Chen S W, Xi Z Y, Wu C, Hu H Z, Liu Z, Wu F M, Wang S L, Fang Z L, Tang W H, Guo D Y 2025 Laser Photonics Rev. e00255
[38] Wu C, Zhang G, Jia J H, Hu H Z, Wu F M, Wang S L, Guo D Y 2024 J. Phys. Chem. Lett. 15 3828
[39] Zhao K, Yang J H, Wang P, Zhou Z Q, Long H R, Xin K Y, Liu C, Han Z, Liu K H, Wei Z M 2024 Adv. Mater. 36 e2406559
[40] Zhong W H, Huang H, Liu Y Q, Jing J W, Wu W T, Liu W Z, Zhao X L, Long S B, Xu H Y 2025 Appl. Phys. Rev. 12 011420
计量
- 文章访问数: 32
- PDF下载量: 0
- 被引次数: 0