搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于背入射技术的全透明β-Ga2O3多模式日盲探测实验系统构建

董典萌 王景晨 徐笑云 彭敏 王泽川 汪成 吴真平

引用本文:
Citation:

基于背入射技术的全透明β-Ga2O3多模式日盲探测实验系统构建

董典萌, 王景晨, 徐笑云, 彭敏, 王泽川, 汪成, 吴真平

Construction of a fully transparent β-Ga2O3 multi-mode solar-blind detection experimental system based on back incidence technology

DONG Dianmeng, WANG Jingchen, XU Xiaoyun, PENG Min, WANG Zechuan, WANG Cheng, WU Zhenping
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 为满足日盲紫外通信等前沿应用对高性能光电探测器的迫切需求, 本文设计并实现了一种基于背入射结构的全透明β-Ga2O3日盲光电探测器. 该器件采用射频磁控溅射技术在双面抛光蓝宝石衬底上外延生长高质量β-Ga2O3薄膜, 并构筑了能够与n型Ga2O3形成高效准欧姆接触的氧化铟锡(ITO)叉指电极. 该结构的核心优势在于利用双抛蓝宝石衬底在深紫外波段的高透过率, 使入射光子绕开紫外区吸收显著的ITO电极, 彻底规避了传统正入射模式中由电极遮蔽效应所导致的光子损失. 得益于此, 器件展现出卓越的光电性能, 如高响应度、高探测率与优异的紫外/可见光抑制比. 在此高性能探测器平台基础上, 进一步发掘了该器件的多功能应用潜力. 基于β-Ga2O3单斜晶系的本征晶格各向异性, 构建偏振探测实验系统, 器件表现出显著的偏振光敏特性. 同时, 成功搭建了非视距(NLOS)紫外通信演示系统, 验证了其在复杂信道下进行高保真信息传输的可行性. 本研究为构建兼具高灵敏度与偏振分辨、非视距通信能力的新一代Ga2O3基光电器件提供了有效的物理思路和实验依据, 在安全通信、偏振成像等领域展现出广阔的应用前景.
    To meet the urgent demand for high-performance photodetectors in emerging solar-blind ultraviolet communication applications, this study systematically designs and implements a fully transparent β-Ga2O3 solar-blind photodetector based on a back-illumination architecture. The device is fabricated using RF magnetron sputtering to epitaxially grow high-quality β-Ga2O3 films (~300 nm in thickness, ~4.98±0.05 eV in bandgap) on double-polished sapphire substrates, with indium tin oxide (ITO) interdigitated electrodes forming efficient quasi-Ohmic contacts with n-type Ga2O3. The core advantage of this design lies in exploiting the high deep-UV transmittance of double-polished sapphire substrates, enabling incident photons to completely bypass the UV-absorbing ITO electrodes and eliminate photon loss caused by electrode shadowing effects in traditional front-illumination configurations. Consequently, the device demonstrates exceptional optoelectronic performance: a maximum responsivity of 0.46 A/W corresponding to an external quantum efficiency of 222.4%, an outstanding UV/visible rejection ratio of 1.2×104, a minimum noise equivalent power of 1.52 pW/Hz1/2, and a peak specific detectivity of 1.39×1011 Jones, with fast response times of 24 μs (rise) and 1.24 ms (decay). Building on this high-performance detector platform, we further explore its multifunctional application potential by constructing a polarization detection system that utilizes the intrinsic lattice anisotropy of monoclinic β-Ga2O3, and successfully demonstrating a non-line-of-sight (NLOS) UV communication system that validates high-fidelity information transmission in complex scattering channels. This work provides effective physical insights and experimental basis for developing next-generation Ga2O3-based optoelectronic devices with integrated high sensitivity, polarization resolution, and NLOS communication capabilities, showing promising applications in secure communications and polarization imaging.
  • 图 1  (a) 磁控溅射沉积系统示意图; (b) 在双面抛光Al2O3衬底上沉积的β-Ga2O3薄膜的XRD谱图; (c) β-Ga2O3薄膜表面的AFM形貌图; (d) 薄膜的光学吸收光谱, 插图为(αhν)2的关系图, 用于带隙估算

    Fig. 1.  (a) Schematic diagram of the magnetron sputtering deposition system; (b) XRD pattern of the β-Ga2O3 thin film deposited on a double-side polished Al2O3 substrate; (c) AFM surface morphology of the β-Ga2O3 film; (d) optical absorption spectrum of the film, with the inset showing the (αhν)2 versus plot for bandgap determination.

    图 2  (a) 基于Ga2O3的全透明日盲紫外探测器结构示意图; (b) 在正入射与背入射光照模式下的I-V特性曲线; (c) 器件的归一化光谱响应; (d) 在暗态和255 nm紫外光照下的噪声电流比较

    Fig. 2.  (a) Schematic structure of the fully transparent Ga2O3-based solar-blind UV photodetector; (b) I-V characteristics under front-illumination and back-illumination; (c) normalized spectral responsivity of the device; (d) noise current measured in the dark and under 255 nm UV illumination.

    图 3  (a) 在黑暗和254 nm紫外光照条件下, β-Ga2O3全透明日盲探测器的I-V特性曲线; (b) 电阻特性; (c) 响应度、外量子效率与入射光功率强度的对应关系; (d) 等效噪声功率、比探测率与入射光功率强度的对应关系

    Fig. 3.  (a) I-V characteristics of the β-Ga2O3 transparent solar-blind photodetector in the dark and under 254 nm UV illumination; (b) resistance behavior of the device as a function of applied bias; (c) variation of R and EQE with incident optical power; (d) dependence of NEP and specific D* on incident optical power.

    图 4  (a) 在5 V偏压和255 nm紫外光照射下, 探测器背入射光开关响应随光强变化的动态特性; (b) 在5 V电压下, 266 nm脉冲激光激发时的瞬态光响应

    Fig. 4.  (a) Dynamic back-illumination switching response of the device under 5 V bias and 255 nm UV illumination at varying intensities; (b) transient photoresponse of the Ga2O3 transparent solar-blind photodetector under 266 nm pulsed laser excitation at 5 V bias.

    图 5  (a) 正入射模式下Ga2O3全透明日盲探测器的示意图; (b) 背入射模式下的示意图; (c), (d) 器件截面的电场分布仿真图, 其中(c)为正入射模式, (d)为背入射模式(颜色由蓝到红代表电场强度强度由弱到强)

    Fig. 5.  (a) Schematic of the Ga2O3 transparent photodetector under front-illumination; (b) schematic under back-illumination mode; simulated electric field distribution in the device cross-section for (c) the front-illumination mode and (d) the back-illumination mode, the color scale from blue to red represents the electric field intensity from low to high.

    图 6  (a) ITO/Ga2O3的能带偏移示意图; (b) 深紫外照射下ITO/Ga2O3/ITO器件的能带结构及载流子传输示意图

    Fig. 6.  (a) Schematic illustration of ITO/Ga2O3 band alignment; (b) energy band diagram and carrier transport mechanism of the ITO/Ga2O3/ITO device under deep UV illumination.

    图 7  (a) 深紫外偏振测试系统实物图; (b) 255 nm, 100 μW/cm2紫外光照射下的光电流与偏振角度的极坐标图; (c) 不同光强下, 从0°到360°偏振角的光响应曲线; (d) 偏振比随入射光强的变化关系

    Fig. 7.  (a) Photograph of the deep-UV polarization measurement setup; (b) polar plot of photocurrent versus polarization angle under 255 nm, 100 μW/cm2 UV illumination; (c) angular-dependent photoresponse from 0° to 360° at various incident power levels; (d) polarization ratio as a function of incident light intensity.

    图 8  (a) 非视距日盲通信系统的工作原理示意图; (b) 实验装置实物图; (c) 不同发射信号下接收端I-t响应曲线

    Fig. 8.  (a) Schematic of the non-line-of-sight solar-blind UV communication system; (b) photograph of the experimental setup; (c) I-t response curves of the receiver for different transmitted signal patterns.

  • [1]

    Guo L, Guo Y N, Wang J X, Wei T B 2021 J. Semicond. 42 081801Google Scholar

    [2]

    Kalra A, Muazzam U U, Muralidharan R, Raghavan S, Nath D N 2022 J. Appl. Phys. 131 150901Google Scholar

    [3]

    Xu Z Y, Sadler M 2008 IEEE Commun. Mag. 46 67

    [4]

    Tan Y F, Qiao Q , Zhao T G , Chang S L , Zhang Z F , Zang J H , Lin C N, Shang Y Y , Yang X, Zhou J W , Yu X , Yu X M , Shan C X 2024 J. Mater. Sci. Technol. 190 200

    [5]

    Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z G, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y, Hao J H 2023 Nat. Commun. 14 418

    [6]

    Zhang H C, Liang F Z, Yang L, Gao Z X, Liang K, Liu S, Ye Y K, Yu H B, Chen W, Kang Y, Sun H D 2024 Adv. Mater. 36 2405874Google Scholar

    [7]

    Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lv H B, Liu Q, Liu M 2019 Chin. Phys. B 28 018501Google Scholar

    [8]

    Hu Z G, Cheng Q, Zhang T, Zhang Y X, Tian X S, Zhang Y C, Feng Q, Xing W, Ning J, Zhang C F, Zhang J C, Hao Y 2023 J. Lumin. 255 119596Google Scholar

    [9]

    Yang H R, Cheng T H, Xin Q, Liu Y Y, Feng H Y, Luo F, Mu W X, Jia Z T, Tao X T 2023 ACS Appl. Mater. Interfaces 15 32561Google Scholar

    [10]

    Nie Y J, Jiao S J, Yang S, Zhao Y, Gao S Y, Wang D B, Yang X, Li Y F, Fu Z D, Li A M, Wang J Z, Zhao L C 2025 Small 21 2501442Google Scholar

    [11]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 物理学报 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [12]

    Zhang Q Y, Dong D M, Zhang T, Zhou T H, Yang Y T, Tang Y J, Shen J Y, Wang T J, Bian T Y, Zhang F, Luo W, Zhang Y, Wu Z P 2023 ACS Nano 17 24033Google Scholar

    [13]

    Lu Y, Miranda C, Tang X, Liu Z Y, Khandelwal V, Krishna S, Li X H 2025 Adv. Mater. 37 2406902Google Scholar

    [14]

    Dong D M, Peng M, Zhang T, Zhang S C, Ma X T, Tang Y J, Cao Y L, Zhang Q Y, Zhang F, Zhang Y, Wu Z P 2025 ACS Photon. 12 3653Google Scholar

    [15]

    Wang Y F, Fu S H, Han Y R, Gao C, Fu R P, Wu Z, Cui W Z, Li B S, Shen A D, Liu Y C 2025 Small 21 e2406989Google Scholar

    [16]

    Chen W C, Xu X Y, Li M H, Kuang S L, Zhang K H, Cheng Q J 2023 Adv. Opt. Mater. 11 2202847Google Scholar

    [17]

    Dang X M, Jiao T, Chen P R, Yu H, Han Y, Li Z, Li Y H, Dong X 2024 Chin. J. Lumin. 45 476Google Scholar

    [18]

    Yan S Q, Jiao T, Ding Z J, Zhou X Y, Ji X Q, Dong X, Zhang J W, Xin Q, Song A M 2023 Adv. Electron. Mater. 9 2300297Google Scholar

    [19]

    Labed M, Park B I, Kim J, Park J H, Min J Y, Hwang H J, Kim J, Rim Y S 2024 ACS Nano 18 6558Google Scholar

    [20]

    Cui M, Xu Y, Sun X Y, Wang Z P, Gong H H, Chen X H, Hu T C, Zhang Y J, Ren F F, Gu S L, Ye J D, Zhang R 2022 J. Phys. D: Appl. Phys. 55 394003Google Scholar

    [21]

    Shen G H, Liu Z, Zhang M L, Guo Y F, Tang W H 2023 IEEE Electron Device Lett. 44 1140Google Scholar

    [22]

    Shen G H, Liu Z, Tan C K, Jiang M M, Li S, Guo Y F, Tang W H 2023 Appl. Phys. Lett. 123 041103Google Scholar

    [23]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar

    [24]

    王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇 2023 物理学报 72 214202Google Scholar

    Wang L X, Liu Y T, Shi F Y, Qi X W, Shen H, Song Y L, Fang Y 2023 Acta Phys. Sin. 72 214202Google Scholar

    [25]

    Zhang Y Q, Wang Y F, Fu R P, Ma J G, Xu H Y, Li B S, Liu Y C 2022 J. Phys. D: Appl. Phys. 55 324002Google Scholar

    [26]

    Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G, Tang W H 2018 Opt. Mater. Express 8 2918Google Scholar

    [27]

    张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志 2024 物理学报 73 098501Google Scholar

    Zhang Y, Liu R W, Zhang J Y, Jiao B B, Wang R Z 2024 Acta Phys. Sin. 73 098501Google Scholar

    [28]

    Kananen B E, Giles N C, Halliburton L E, Foundos G K, Chang K B, Stevens K T 2017 J. Appl. Phys. 122 215703Google Scholar

    [29]

    McCluskey M D 2020 J. Appl. Phys. 127 2002230

    [30]

    Neal A T, Mou S, Rafique S, Zhao H P, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N, Chabak K D, Jessen G H 2018 Appl. Phys. Lett. 113 062101Google Scholar

    [31]

    Liu H W, Zhou S R, Zhang H, Ye L J, Xiong Y Q, Yu P, Li W J, Yang X, Li H L, Kong C Y 2022 J. Phys. D: Appl. Phys. 55 305104Google Scholar

    [32]

    许怡红, 范伟航, 王尘 2025 物理学报 74 028104Google Scholar

    Xu Y H, Fan W H, Wang C 2025 Acta Phys. Sin. 74 028104Google Scholar

    [33]

    Huan Y W, Sun S M, Gu C J, Liu W J, Ding S J, Yu H Y, Xia C T, Zhang D W 2018 Nanoscale Res. Lett. 13 246Google Scholar

    [34]

    Musztyfaga S M, Gawlinska N K, Socha R, Panek P 2023 Materials 16 1363Google Scholar

    [35]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 028104

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501

    [36]

    Zhang Y H, Liang H L, Xing F, Gao Q Q, Feng Y, Sun Y P, Mei Z X 2024 Sci. China Phys. , Mech. Astron. 67 247312Google Scholar

    [37]

    Zhang G, Wang Z Y, Chen S W, Xi Z Y, Wu C, Hu H Z, Liu Z, Wu F M, Wang S L, Fang Z L, Tang W H, Guo D Y 2025 Laser Photonics Rev. 19 e00255Google Scholar

    [38]

    Wu C, Zhang G, Jia J H, Hu H Z, Wu F M, Wang S L, Guo D Y 2024 J. Phys. Chem. Lett. 15 3828Google Scholar

    [39]

    Zhao K, Yang J H, Wang P, Zhou Z Q, Long H R, Xin K Y, Liu C, Han Z, Liu K H, Wei Z M 2024 Adv. Mater. 36 e2406559Google Scholar

    [40]

    Zhong W H, Huang H, Liu Y Q, Jing J W, Wu W T, Liu W Z, Zhao X L, Long S B, Xu H Y 2025 Appl. Phys. Rev. 12 011420Google Scholar

  • [1] 许怡红, 范伟航, 王尘. 退火温度对磁控溅射掺锡氧化镓薄膜特性及其日盲光电探测器性能的影响. 物理学报, doi: 10.7498/aps.74.20240972
    [2] 菅佳玲, 钱科宇, 王子坚, 苏雨辰, 翁正进, 肖少庆, 南海燕. 等离激元增强范德瓦耳斯光电探测器偏振性能研究进展. 物理学报, doi: 10.7498/aps.74.20251165
    [3] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.73.20240267
    [4] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 物理学报, doi: 10.7498/aps.73.20240186
    [5] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.72.20222222
    [6] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, doi: 10.7498/aps.72.20221476
    [7] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, doi: 10.7498/aps.72.20221716
    [8] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, doi: 10.7498/aps.71.20211536
    [9] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, doi: 10.7498/aps.71.20220859
    [10] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, doi: 10.7498/aps.70.20211039
    [11] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响. 物理学报, doi: 10.7498/aps.70.20210434
    [12] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, doi: 10.7498/aps.69.20200424
    [13] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展. 物理学报, doi: 10.7498/aps.68.20181845
    [14] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法. 物理学报, doi: 10.7498/aps.65.094201
    [15] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, doi: 10.7498/aps.63.068103
    [16] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, doi: 10.7498/aps.63.116701
    [17] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, doi: 10.7498/aps.62.076106
    [18] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析. 物理学报, doi: 10.7498/aps.62.048801
    [19] 孙尧, 张淳民, 杜娟, 赵葆常. 一种基于新型偏振干涉成像光谱仪的目标偏振信息探测新方法. 物理学报, doi: 10.7498/aps.59.3863
    [20] 简小华, 张淳民, 祝宝辉, 赵葆常, 杜 娟. 利用偏振干涉成像光谱仪进行偏振探测的新方法. 物理学报, doi: 10.7498/aps.57.7565
计量
  • 文章访问数:  329
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-29
  • 修回日期:  2025-09-20
  • 上网日期:  2025-09-30

/

返回文章
返回