搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于背入射技术的全透明β-Ga2O3多模式日盲探测实验系统构建

董典萌 王景晨 徐笑云 彭敏 王泽川 汪成 吴真平

引用本文:
Citation:

基于背入射技术的全透明β-Ga2O3多模式日盲探测实验系统构建

董典萌, 王景晨, 徐笑云, 彭敏, 王泽川, 汪成, 吴真平

Construction of a Fully Transparent Back-Illuminated Ga2O3 Polarization Detection Experimental System for Non-Line-of-Sight Communication Applications

DONG Dianmeng, WANG Jingchen, XU Xiaoyun, PENG Min, WANG Zechuan, WANG Cheng, WU Zhenping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为满足日盲紫外通信等前沿应用对高性能光电探测器的迫切需求,本文设计并实现了一种基于背入射结构的全透明β-Ga2O3日盲光电探测器.该器件采用射频磁控溅射技术在双面抛光蓝宝石衬底上外延生长高质量β-Ga2O3薄膜,并构筑了能够与n型Ga2O3形成高效准欧姆接触的氧化铟锡(ITO)叉指电极.该结构的核心优势在于利用双抛蓝宝石衬底在深紫外波段的高透过率,使入射光子绕开紫外区吸收显著的ITO电极,彻底规避了传统正入射模式中由电极遮蔽效应所导致的光子损失.得益于此,器件展现出卓越的光电性能,如高响应度、高探测率与优异的紫外/可见光抑制比.在此高性能探测器平台基础上,我们进一步发掘了该器件的多功能应用潜力.基于β-Ga2O3单斜晶系的本征晶格各向异性,构建偏振探测实验系统,器件表现出显著的偏振光敏特性.同时,我们成功搭建了非视距(NLOS)紫外通信演示系统,验证了其在复杂信道下进行高保真信息传输的可行性.本研究为构建兼具高灵敏度与偏振分辨、非视距通信能力的新一代Ga2O3基光电器件提供了有效的物理思路和实验依据,在安全通信、偏振成像等领域展现出广阔的应用前景.
    To meet the urgent demand for high-performance photodetectors in emerging solar-blind ultraviolet communication applications, this study systematically designed and implemented a fully transparent β-Ga2O3 solarblind photodetector based on a back-illumination architecture. The device was fabricated using RF magnetron sputtering to epitaxially grow highquality β-Ga2O3 films (~300 nm thickness, bandgap ~4.98 ± 0.05 eV) on double-polished sapphire substrates, with indium tin oxide (ITO) interdigitated electrodes forming efficient quasi-Ohmic contacts with ntype Ga2O3. The core advantage of this design lies in exploiting the high deep-UV transmittance of double-polished sapphire substrates, enabling incident photons to completely bypass the UV-absorbing ITO electrodes and eliminate photon loss caused by electrode shadowing effects in conventional front-illumination configurations. Consequently, the device demonstrates exceptional optoelectronic performance: a maximum responsivity of 0.46 A/W corresponding to an external quantum efficiency of 222.4%, an outstanding UV/visible rejection ratio of 1.2×104, a minimum noise equivalent power of 1.52 pW/Hz1/2, and a peak specific detectivity of 1.39×1011 Jones, with fast response times of 24 μs (rise) and 1.24 ms (decay). Building upon this high-performance detector platform, we further explored its multifunctional application potential by constructing polarization detection systems that exploit the intrinsic lattice anisotropy of monoclinic β-Ga2O3, and successfully demonstrating a nonline-of-sight (NLOS) UV communication system that validates highfidelity information transmission in complex scattering channels. This research provides effective physical insights and experimental foundations for developing next-generation Ga2O3-based optoelectronic devices with integrated high sensitivity, polarization resolution, and NLOS communication capabilities, showing promising applications in secure communications and polarization imaging.
  • [1]

    Guo L, Guo Y N, Wang J X, Wei T B 2021 J. Semicond. 42 081801

    [2]

    Kalra A, Muazzam U U, Muralidharan R., Raghavan S, Nath D N 2022 J. Appl. Phys. 131 150901

    [3]

    Xu Z Y, Sadler M 2008 IEEE Commun. Mag. 46 67

    [4]

    Tan Y F, Qiao Q, Zhao T G, Chang S L, Zhang Z F, Zang J H, Lin C N, Shang Y Y, Yang X, Zhou J W, Yu X, Yu X M, Shan C X 2024 Journal of Materials Science & Technology 190 200

    [5]

    Zhang Q Y, Li N, Zhang T, Dong D M, Yang Y T, Wang Y H, Dong Z G, Shen J Y, Zhou T H, Liang Y L, Tang W H, Wu Z P, Zhang Y, Hao J H 2023 Nat. Commun. 14 418

    [6]

    Zhang H C, Liang F Z, Yang L, Gao Z X, Liang K, Liu S, Ye Y K, Yu H B, Chen W, Kang Y, Sun H D 2024 Adv. Mater. 36 2405874

    [7]

    Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lv H B, Liu Q, Liu M 2019 Chin. Phys. B 28 018501 018501

    [8]

    Hu Z G, Cheng Q, Zhang T, Zhang Y X, Tian X S, Zhang Y C, Feng Q, Xing W, Ning J, Zhang C F, Zhang J C, Hao Y 2023 J. Lumin. 255 119596

    [9]

    Yang H R, Cheng T H, Xin Q, Liu Y Y, Feng H Y, Luo F, Mu W X, Jia Z T, Tao X T 2023 ACS Appl. Mater. Interfaces 15 32561

    [10]

    Nie Y J, Jiao S J, Yang S, Zhao Y, Gao S Y, Wang D B, Yang X, Li Y F, Fu Z D, Li A M, Wang J Z, Zhao L C 2025 Small 21 2501442

    [11]

    Kuang D, Xu S, Shi D, Guo J, Yu Z 2023 Acta Phys. Sin. 72 038501 (in Chinese)[况丹, 徐爽, 史大为, 郭建, 喻志农 2021 物理学报 71 038501]

    [12]

    Zhang Q Y, Dong D M, Zhang T, Zhou T H, Yang Y T, Tang Y J, Shen J Y, Wang T J, Bian T Y, Zhang F, Luo W, Zhang Y, Wu Z P 2023 ACS Nano 17 24033

    [13]

    Lu Y, Miranda C, Tang X, Liu Z Y, Khandelwal V, Krishna S, Li X H 2025 Adv. Mater. 37 2406902

    [14]

    Dong D M, Peng M, Zhang T, Zhang S C, Ma X T, Tang Y J, Cao Y L, Zhang Q Y, Zhang F, Zhang Y, Wu Z P 2025 ACS Photon. 12 3653

    [15]

    Wang Y F, Fu S H, Han Y R, Gao C, Fu R P, Wu Z, Cui W Z, Li B S, Shen A D, Liu Y C 2025 Small 21 e2406989

    [16]

    Chen W C, Xu X Y, Li M H, Kuang S L, Zhang K H, Cheng Q J 2023 Adv. Opt. Mater. 11 2202847

    [17]

    Dang X M, Jiao T, Chen P R, Yu H, Han Y, Li Z, Li Y H, Dong X 2024 Chinese Journal of Luminescence 45 476

    [18]

    Yan S Q, Jiao T, Ding Z J, Zhou X Y, Ji X Q, Dong X, Zhang J W, Xin Q, Song A M 2023 Adv. Electron. Mater. 9 2300297

    [19]

    Labed M, Park B I, Kim J, Park J H, Min J Y, Hwang H J, Kim J, Rim Y S 2024 ACS Nano 18 6558

    [20]

    Cui M, Xu Y, Sun X Y, Wang Z P, Gong H H, Chen X H, Hu T C, Zhang Y J, Ren F F, Gu S L, Ye J D, Zhang R 2022 J. Phys. D:Appl. Phys. 55 394003

    [21]

    Shen G H, Liu Z, Zhang M L, Guo Y F, Tang W H 2023 IEEE Electron Device Lett. 44 1140

    [22]

    Shen G H, Liu Z, Tan C K, Jiang M M, Li S, Guo Y F, Tang W H 2023 Appl. Phys. Lett. 123 041103

    [23]

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302 (in Chinese)[董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302]

    [24]

    Wang L X, Liu Y T, Shi F Y, Qi X W, Shen H, Song Y L, Fang Y 2023 Acta Phys. Sin. 72 214202(in Chinese)[王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇 2023 物理学报 72 214202]

    [25]

    Zhang Y Q, Wang Y F, Fu R P, Ma J G, Xu H Y, Li B S, Liu Y C 2022 J. Phys. D:Appl. Phys. 55 324002

    [26]

    Wang X, Chen Z W, Guo D Y, Zhang X, Wu Z P, Li P G, Tang W H 2018 Opt. Mater. Express 8 2918

    [27]

    Zhang Y, Liu R W, Zhang J Y, Jiao B B, Wang R Z 2024 Acta Phys. Sin. 73 098501 (in Chinese)[张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志, 2024 物理学报 73 098501]

    [28]

    Kananen B. E., Giles N. C., Halliburton L E, Foundos G K, Chang K B, Stevens K T 2017 J. Appl. Phys. 122 215703

    [29]

    McCluskey M D 2020 J. Appl. Phys. 127 2002230

    [30]

    Neal A T, Mou S, Rafique S, Zhao H P, Ahmadi E, Speck J S, Stevens K T, Blevins J D, Thomson D B, Moser N, Chabak K D, Jessen G H 2018 Appl. Phys. Lett. 113 062101

    [31]

    Liu H W, Zhou S R, Zhang H, Ye L J, Xiong Y Q, Yu P, Li W J, Yang X, Li H L, Kong C Y 2022 J. Phys. D:Appl. Phys. 55 305104

    [32]

    Xu Y H, Fan W H, Wang C 2025 Acta Phys. Sin. 74 028104 (in Chinese)[许怡红,范伟航, 王尘 2025 物理学报 74 028104]

    [33]

    Huan Y W, Sun S M, Gu C J, Liu W J, Ding S J, Yu H Y, Xia C T, Zhang D W 2018 Nanoscale Res. Lett. 13 246

    [34]

    Musztyfaga S M, Gawlinska N K, Socha R, Panek P 2023 Materials (Basel) 16 1363

    [35]

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501(in Chinese)[刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 028104]

    [36]

    Zhang Y H, Liang H L, Xing F, Gao Q Q, Feng Y, Sun Y P, Mei Z X 2024 Sci. China Phys., Mech. Astron. 67 247312

    [37]

    Zhang G, Wang Z Y, Chen S W, Xi Z Y, Wu C, Hu H Z, Liu Z, Wu F M, Wang S L, Fang Z L, Tang W H, Guo D Y 2025 Laser Photonics Rev. e00255

    [38]

    Wu C, Zhang G, Jia J H, Hu H Z, Wu F M, Wang S L, Guo D Y 2024 J. Phys. Chem. Lett. 15 3828

    [39]

    Zhao K, Yang J H, Wang P, Zhou Z Q, Long H R, Xin K Y, Liu C, Han Z, Liu K H, Wei Z M 2024 Adv. Mater. 36 e2406559

    [40]

    Zhong W H, Huang H, Liu Y Q, Jing J W, Wu W T, Liu W Z, Zhao X L, Long S B, Xu H Y 2025 Appl. Phys. Rev. 12 011420

  • [1] 许怡红, 范伟航, 王尘. 退火温度对磁控溅射掺锡氧化镓薄膜特性及其日盲光电探测器性能的影响. 物理学报, doi: 10.7498/aps.74.20240972
    [2] 菅佳玲, 钱科宇, 王子坚, 苏雨辰, 翁正进, 肖少庆, 南海燕. 等离激元增强范德瓦尔斯光电探测器偏振性能研究进展. 物理学报, doi: 10.7498/aps.74.20251165
    [3] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.73.20240267
    [4] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 物理学报, doi: 10.7498/aps.73.20240186
    [5] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.72.20222222
    [6] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, doi: 10.7498/aps.72.20221476
    [7] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, doi: 10.7498/aps.72.20221716
    [8] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, doi: 10.7498/aps.71.20211536
    [9] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, doi: 10.7498/aps.71.20220859
    [10] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, doi: 10.7498/aps.70.20211039
    [11] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响. 物理学报, doi: 10.7498/aps.70.20210434
    [12] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, doi: 10.7498/aps.69.20200424
    [13] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展. 物理学报, doi: 10.7498/aps.68.20181845
    [14] 刘敬, 金伟其, 王霞, 鲁啸天, 温仁杰. 考虑探测器特性的光电偏振成像系统偏振信息重构方法. 物理学报, doi: 10.7498/aps.65.094201
    [15] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, doi: 10.7498/aps.63.068103
    [16] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, doi: 10.7498/aps.63.116701
    [17] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, doi: 10.7498/aps.62.076106
    [18] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析. 物理学报, doi: 10.7498/aps.62.048801
    [19] 孙尧, 张淳民, 杜娟, 赵葆常. 一种基于新型偏振干涉成像光谱仪的目标偏振信息探测新方法. 物理学报, doi: 10.7498/aps.59.3863
    [20] 简小华, 张淳民, 祝宝辉, 赵葆常, 杜 娟. 利用偏振干涉成像光谱仪进行偏振探测的新方法. 物理学报, doi: 10.7498/aps.57.7565
计量
  • 文章访问数:  32
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-30

/

返回文章
返回