搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气环境下纳米线-基底界面黏附能测量的新方法:交叉堆叠拱形测试

李金锴 宋小东 侯丽珍 王世良

引用本文:
Citation:

大气环境下纳米线-基底界面黏附能测量的新方法:交叉堆叠拱形测试

李金锴, 宋小东, 侯丽珍, 王世良

A Novel Method for Measuring Nanowire-Substrate Interface Adhesion Energy in Ambient Atmosphere: Cross-Stacked Arch Testing

LI Jinkai, SONG Xiaodong, HOU Lizhen, WANG Shiliang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 纳米线-基底界面黏附能对微纳器件的性能至关重要。然而,现有测量方法普遍存在操作复杂、误差大等问题。本文提出一种基于光学显微镜微纳操纵技术的交叉堆叠拱形测试法,实现了大气环境下纳米线-基底界面黏附能的定量测量。利用该方法,成功测定了SiC、ZnO和ZnS纳米线与Si基底之间的界面黏附能。测试结果显示:SiC纳米线/Si基底的界面黏附能测量值(0.154 ± 0.030 J/m2)与范德华力理论预测值(~0.148 J/m2)吻合良好;而ZnO纳米线/Si基底(0.120 ± 0.034 J/m2)和ZnS纳米线/Si基底(0.192 ± 0.043 J/m2)的测量值,则显著高于其对应的范德华理论预测值(分别为~0.090 J/m2和~0.122 J/m2)。分析表明,这种差异源于ZnO和ZnS表面极化产生的附加静电吸附作用。本文提出的方法操作简便、准确性高、普适性强,为研究一维纳米结构与基底间的界面黏附行为提供了一种高效可靠的新途径。
    Adhesion at the nanowire–substrate interface plays a critical role in determining the performance, integration density, and long-term reliability of micro/nano devices. However, existing measurement techniques, such as peeling tests based on atomic force microscopy or in situ electron microscopy techniques, often suffer from operational complexity, limited environmental applicability, and large measurement uncertainties. To address these issues, this study proposes a cross-stacked bridge testing method based on optical microscopy nanomanipulation (OMNM), which enables direct and quantitative measurement of nanowire–substrate interfacial adhesion energy under ambient conditions. In this method, nanowires are precisely stacked on the target substrate to form a grid structure, where miniature bridges spontaneously appear at the intersections. The bridge geometry is governed by the mechanical balance between nanowire bending deformation and interfacial adhesion. By combining Euler–Bernoulli beam theory with the principle of energy conservation, a quantitative model is established to correlate arch geometry with adhesion energy, thereby enabling reliable measurement. Using this method, we measured the adhesion energies of SiC, ZnO, and ZnS nanowires on Si substrates. The SiC/Si system yielded an adhesion energy of 0.154 ± 0.030 J/m2, in excellent agreement with the van der Waals (vdW) theoretical value (~0.148 J/m2), confirming that its interfacial behavior is dominated by vdW forces. In contrast, the measured adhesion energies for ZnO/Si (0.120 ± 0.034 J/m2) and ZnS/Si (0.192 ± 0.043 J/m2) were significantly higher than their corresponding vdW predictions (0.090 J/m2 and 0.122 J/m2, respectively). This discrepancy is attributed to surface polarization in ZnO and ZnS nanowires, which induces additional electrostatic attraction and thus enhances interfacial adhesion. These findings not only reveal the coupling mechanism between vdW forces and electrostatic interactions in polar nanowire systems but also provide new experimental evidence for understanding complex interfacial phenomena. The proposed OMNM-based cross-stacked bridge testing method offers advantages of operational simplicity, high accuracy, and broad applicability. Beyond nanowires, it can be extended to other low-dimensional nanostructures, such as nanotubes and two-dimensional materials. Looking forward, this approach holds promise as an efficient platform for building adhesion energy databases of realistic systems and for advancing mechanistic insights into interfacial adhesion. Furthermore, it can provide valuable guidance for the design, optimization, and reliability evaluation of next-generation nanoelectronic and optoelectronic devices, thereby contributing to micro/nano fabrication and functional device engineering.
  • [1]

    Torkashvand Z, Shayeganfar F, Ramazani A 2024 Micromachines 15 175

    [2]

    Gu J L, Shen Y F, Tian S J, Xue Z G, Meng X H 2023 Biosensors 13 1025

    [3]

    Kong L D, Zhang T Z, Liu X Y, Zhao X, Xiong J M, Li H, Wang Z, Xie X M, You L X 2025 Nat. Photonics 19 407

    [4]

    Wu L, Hu Z Y, Liang L, Hu R J, Wang J Z, Yu L W 2025 Nat. Commun. 16 965

    [5]

    Duan C, Liu J J, Chen Y J, Zuo H L, Dong J S, Ouyang G 2024 Acta Phys. Sin. 73 056801 (in Chinese) [段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢 2024 物理学报 73 056801]

    [6]

    Sunwoo S H, Han S I, Jung D J, Kim M, Nam S, Lee H, Choi S, Kang H, Cho Y S, Yeom D H, Cha M J, Lee S, Lee S P, Hyeon T, Kim D H 2023 ACS Nano 17 7550

    [7]

    He H L, Qin Y, Liu J R, Wang Y S, Wang J F, Zhao Y H, Zhu Z Y, Jiang Q, Wan Y H, Qu X R, Yu Z C 2023 Chem. Eng. J. 460 141661

    [8]

    Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Zhang J F 2022 ACS Appl. Mater. Interfaces 14 18884

    [9]

    Chen C, Wang R, Li X L, Zhao B, Wang H, Zhou Z, Zhu J H, Liu J W 2022 Nano Lett. 22 4131

    [10]

    Wang K X, Yap L W, Gong S, Wang R, Wang S J, Cheng W L 2021 Adv. Funct. Mater. 31 2008347

    [11]

    Liu X L, Feng T, Meng X Y, Wen S F, Hou W H, Ding J H, Lin H J, Yue Z F 2023 J. Alloys Compd. 960 170934

    [12]

    Zhou L, Fu Y W, Yin T, Tian X F, Qi L H 2019 Ceram. Int. 45 22571

    [13]

    Shah M, Wu Y X, Chen S L, Mead J L, Hou L Z, Liu K, Tao S H, Fatikow S, Wang S L 2025 J. Phys. D: Appl. Phys. 58 083001

    [14]

    Mead J L, Wang S L, Zimmermann S, Fatikow S, Huang H 2023 Engineering 24 39

    [15]

    Yibibulla T, Hou L Z, Mead J L, Huang H, fatikow S, Wang S L 2024 Nanoscale Adv. 6 3251

    [16]

    Zhang W W, Yao Z J, Liu H, Liu J H, Li M Y, Li F Q, Chen H T 2023 Microelectron. Reliab. 151 115236

    [17]

    Kim J, Choi J S, Lim S, Moon S E, Im J P, Kim J H, Kang S M 2022 Small Struct. 3 2200023

    [18]

    Li W T, Zhang H, Shi S W, Xu J X, Qin X, He Q Q, Yang K, Dai W B, Liu G, Zhou Q G, Yu H Z, Silva S R, Fahlman M 2020 J. Mater. Chem. C 8 4636

    [19]

    Jia C C, Lin Z Y, Huang Y, Duan X F 2019 Chem. Rev. 119 9074

    [20]

    Zhao Y P, Wang L S, Yu T X 2003 J. Adhes. Sci. Technol. 17 519

    [21]

    He Y, Xu H K, Ouyang G 2022 Chin. Phys. B 31 110502

    [22]

    Mastrangelo C 1997 Tribol. Lett. 3 223

    [23]

    Israelachvili J N 2010 Intermolecular and surface forces (London(UK): Academic Press)

    [24]

    Wei Z X, Lin K, Wang X H, Zhao Y P 2021 Compos. Part A Appl. Sci. Manuf. 150 106592

    [25]

    Mead J L, Wang S L, Zimmermann S, Huang H 2020 Nanoscale 12 8237

    [26]

    Klauser W, Nasrullayev T, Fatikow S 2023 J. Vac. Sci. Technol. B 41 052802

    [27]

    Manoharan M, Haque M 2009 J. Phys. D: Appl. Phys. 42 095304

    [28]

    Mead J L, Xie H T, Wang S L, Huang H 2018 Nanoscale 10 3410

    [29]

    Akhtar N, Song X D, Liu R Z, Asif M, Mead J L, Hou L Z, Wang S L 2024 Appl. Phys. Lett. 125 251601

    [30]

    Sychev D, Schubotz S, Besford Q A, Fery A, Auernhammer G K 2023 J. Colloid Interface Sci. 642 216

    [31]

    Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E 2008 Nano Lett. 8 544

    [32]

    Roenbeck M R, Wei X, Beese A M, Naraghi M, Furmanchuk A o, Paci J T, Schatz G C, Espinosa H D 2014 ACS nano 8 124

    [33]

    Sui C, Luo Q T, He X D, Tong L Y, Zhang K, Zhang Y Y, Zhang Y, Wu J Y, Wang C 2016 Carbon 107 651

    [34]

    Kim D, Cha B J, Guo H, Gao G H, Pennington C, Wong M S, Getachew B A, Han Y M 2024 Nano Lett. 24 6038

    [35]

    Yibibulla T, Jiang Y J, Wang S L, Huang H 2021 Appl. Phys. Lett. 118 043103

    [36]

    Roy A, Ju S-p, Wang S L, Huang H 2019 Nanotechnology 30 065705

    [37]

    Ma L, Jiang Y J, Dai G Z, Mead J L, Yibibulla T, Lu M Y, Huang H, Fatikow S, Wang S L 2022 J. Phys. D: Appl. Phys. 55 364001

    [38]

    Mastrangelo C H, Hsu C H 1992 Technical Digest IEEE Solid-State Sensor and Actuator Workshop Hilton Head, USA, June 22-25, 1992 p208

    [39]

    DelRio F W, de Boer M P, Knapp J A, David Reedy E, Clews P J, Dunn M L 2005 Nat. Mater. 4 629

    [40]

    DelRio F W, Dunn M L, Phinney L M, Bourdon C J, De Boer M P 2007 Appl. Phys. Lett. 90 163104

    [41]

    Chen S L, Li W J, Li X X, Yang W Y 2019 Prog. Mater. Sci 104 138

    [42]

    Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301

    [43]

    Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D 2011 Prog. Mater. Sci 56 175

    [44]

    Bergstrom L 1997 Adv. Colloid Interface Sci. 70 125

  • [1] 殷雪彤, 廖敦渊, 潘东, 王鹏, 刘冰冰. 高压下GaAsSb纳米线室温光致发光特性研究. 物理学报, doi: 10.7498/aps.74.20250042
    [2] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响. 物理学报, doi: 10.7498/aps.71.20211864
    [3] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算. 物理学报, doi: 10.7498/aps.64.138102
    [4] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, doi: 10.7498/aps.62.186501
    [5] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, doi: 10.7498/aps.61.208501
    [6] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响. 物理学报, doi: 10.7498/aps.61.066101
    [7] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.60.038501
    [8] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, doi: 10.7498/aps.60.127503
    [9] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, doi: 10.7498/aps.58.7781
    [10] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究. 物理学报, doi: 10.7498/aps.58.4835
    [11] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, doi: 10.7498/aps.57.4347
    [12] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1499
    [13] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究. 物理学报, doi: 10.7498/aps.56.4017
    [14] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究. 物理学报, doi: 10.7498/aps.56.6616
    [15] 卿 涛, 邵天敏, 温诗铸. 材料表面之间黏附过程分析. 物理学报, doi: 10.7498/aps.56.1555
    [16] 胡利勤, 林志贤, 郭太良, 姚 亮, 王晶晶, 杨春建, 张永爱, 郑可炉. 取向和非取向In2O3纳米线的场发射研究. 物理学报, doi: 10.7498/aps.55.6136
    [17] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究. 物理学报, doi: 10.7498/aps.55.891
    [18] 李志杰, 潘学铃, 孙维民, 曲家惠, 王 福. Al3O3N纳米线的制备与表征. 物理学报, doi: 10.7498/aps.54.450
    [19] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究. 物理学报, doi: 10.7498/aps.54.384
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究. 物理学报, doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  72
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-24

/

返回文章
返回