-
纳米线-基底界面黏附能对微纳器件的性能至关重要。然而,现有测量方法普遍存在操作复杂、误差大等问题。本文提出一种基于光学显微镜微纳操纵技术的交叉堆叠拱形测试法,实现了大气环境下纳米线-基底界面黏附能的定量测量。利用该方法,成功测定了SiC、ZnO和ZnS纳米线与Si基底之间的界面黏附能。测试结果显示:SiC纳米线/Si基底的界面黏附能测量值(0.154 ± 0.030 J/m2)与范德华力理论预测值(~0.148 J/m2)吻合良好;而ZnO纳米线/Si基底(0.120 ± 0.034 J/m2)和ZnS纳米线/Si基底(0.192 ± 0.043 J/m2)的测量值,则显著高于其对应的范德华理论预测值(分别为~0.090 J/m2和~0.122 J/m2)。分析表明,这种差异源于ZnO和ZnS表面极化产生的附加静电吸附作用。本文提出的方法操作简便、准确性高、普适性强,为研究一维纳米结构与基底间的界面黏附行为提供了一种高效可靠的新途径。Adhesion at the nanowire–substrate interface plays a critical role in determining the performance, integration density, and long-term reliability of micro/nano devices. However, existing measurement techniques, such as peeling tests based on atomic force microscopy or in situ electron microscopy techniques, often suffer from operational complexity, limited environmental applicability, and large measurement uncertainties. To address these issues, this study proposes a cross-stacked bridge testing method based on optical microscopy nanomanipulation (OMNM), which enables direct and quantitative measurement of nanowire–substrate interfacial adhesion energy under ambient conditions. In this method, nanowires are precisely stacked on the target substrate to form a grid structure, where miniature bridges spontaneously appear at the intersections. The bridge geometry is governed by the mechanical balance between nanowire bending deformation and interfacial adhesion. By combining Euler–Bernoulli beam theory with the principle of energy conservation, a quantitative model is established to correlate arch geometry with adhesion energy, thereby enabling reliable measurement. Using this method, we measured the adhesion energies of SiC, ZnO, and ZnS nanowires on Si substrates. The SiC/Si system yielded an adhesion energy of 0.154 ± 0.030 J/m2, in excellent agreement with the van der Waals (vdW) theoretical value (~0.148 J/m2), confirming that its interfacial behavior is dominated by vdW forces. In contrast, the measured adhesion energies for ZnO/Si (0.120 ± 0.034 J/m2) and ZnS/Si (0.192 ± 0.043 J/m2) were significantly higher than their corresponding vdW predictions (0.090 J/m2 and 0.122 J/m2, respectively). This discrepancy is attributed to surface polarization in ZnO and ZnS nanowires, which induces additional electrostatic attraction and thus enhances interfacial adhesion. These findings not only reveal the coupling mechanism between vdW forces and electrostatic interactions in polar nanowire systems but also provide new experimental evidence for understanding complex interfacial phenomena. The proposed OMNM-based cross-stacked bridge testing method offers advantages of operational simplicity, high accuracy, and broad applicability. Beyond nanowires, it can be extended to other low-dimensional nanostructures, such as nanotubes and two-dimensional materials. Looking forward, this approach holds promise as an efficient platform for building adhesion energy databases of realistic systems and for advancing mechanistic insights into interfacial adhesion. Furthermore, it can provide valuable guidance for the design, optimization, and reliability evaluation of next-generation nanoelectronic and optoelectronic devices, thereby contributing to micro/nano fabrication and functional device engineering.
-
Keywords:
- nanowire /
- adhesion energy /
- micro/nanomanipulation /
- van der Waals force
-
[1] Torkashvand Z, Shayeganfar F, Ramazani A 2024 Micromachines 15 175
[2] Gu J L, Shen Y F, Tian S J, Xue Z G, Meng X H 2023 Biosensors 13 1025
[3] Kong L D, Zhang T Z, Liu X Y, Zhao X, Xiong J M, Li H, Wang Z, Xie X M, You L X 2025 Nat. Photonics 19 407
[4] Wu L, Hu Z Y, Liang L, Hu R J, Wang J Z, Yu L W 2025 Nat. Commun. 16 965
[5] Duan C, Liu J J, Chen Y J, Zuo H L, Dong J S, Ouyang G 2024 Acta Phys. Sin. 73 056801 (in Chinese) [段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢 2024 物理学报 73 056801]
[6] Sunwoo S H, Han S I, Jung D J, Kim M, Nam S, Lee H, Choi S, Kang H, Cho Y S, Yeom D H, Cha M J, Lee S, Lee S P, Hyeon T, Kim D H 2023 ACS Nano 17 7550
[7] He H L, Qin Y, Liu J R, Wang Y S, Wang J F, Zhao Y H, Zhu Z Y, Jiang Q, Wan Y H, Qu X R, Yu Z C 2023 Chem. Eng. J. 460 141661
[8] Zhao Z Q, Li Q J, Dong Y, Gong J X, Li Z, Zhang J F 2022 ACS Appl. Mater. Interfaces 14 18884
[9] Chen C, Wang R, Li X L, Zhao B, Wang H, Zhou Z, Zhu J H, Liu J W 2022 Nano Lett. 22 4131
[10] Wang K X, Yap L W, Gong S, Wang R, Wang S J, Cheng W L 2021 Adv. Funct. Mater. 31 2008347
[11] Liu X L, Feng T, Meng X Y, Wen S F, Hou W H, Ding J H, Lin H J, Yue Z F 2023 J. Alloys Compd. 960 170934
[12] Zhou L, Fu Y W, Yin T, Tian X F, Qi L H 2019 Ceram. Int. 45 22571
[13] Shah M, Wu Y X, Chen S L, Mead J L, Hou L Z, Liu K, Tao S H, Fatikow S, Wang S L 2025 J. Phys. D: Appl. Phys. 58 083001
[14] Mead J L, Wang S L, Zimmermann S, Fatikow S, Huang H 2023 Engineering 24 39
[15] Yibibulla T, Hou L Z, Mead J L, Huang H, fatikow S, Wang S L 2024 Nanoscale Adv. 6 3251
[16] Zhang W W, Yao Z J, Liu H, Liu J H, Li M Y, Li F Q, Chen H T 2023 Microelectron. Reliab. 151 115236
[17] Kim J, Choi J S, Lim S, Moon S E, Im J P, Kim J H, Kang S M 2022 Small Struct. 3 2200023
[18] Li W T, Zhang H, Shi S W, Xu J X, Qin X, He Q Q, Yang K, Dai W B, Liu G, Zhou Q G, Yu H Z, Silva S R, Fahlman M 2020 J. Mater. Chem. C 8 4636
[19] Jia C C, Lin Z Y, Huang Y, Duan X F 2019 Chem. Rev. 119 9074
[20] Zhao Y P, Wang L S, Yu T X 2003 J. Adhes. Sci. Technol. 17 519
[21] He Y, Xu H K, Ouyang G 2022 Chin. Phys. B 31 110502
[22] Mastrangelo C 1997 Tribol. Lett. 3 223
[23] Israelachvili J N 2010 Intermolecular and surface forces (London(UK): Academic Press)
[24] Wei Z X, Lin K, Wang X H, Zhao Y P 2021 Compos. Part A Appl. Sci. Manuf. 150 106592
[25] Mead J L, Wang S L, Zimmermann S, Huang H 2020 Nanoscale 12 8237
[26] Klauser W, Nasrullayev T, Fatikow S 2023 J. Vac. Sci. Technol. B 41 052802
[27] Manoharan M, Haque M 2009 J. Phys. D: Appl. Phys. 42 095304
[28] Mead J L, Xie H T, Wang S L, Huang H 2018 Nanoscale 10 3410
[29] Akhtar N, Song X D, Liu R Z, Asif M, Mead J L, Hou L Z, Wang S L 2024 Appl. Phys. Lett. 125 251601
[30] Sychev D, Schubotz S, Besford Q A, Fery A, Auernhammer G K 2023 J. Colloid Interface Sci. 642 216
[31] Strus M, Zalamea L, Raman A, Pipes R, Nguyen C, Stach E 2008 Nano Lett. 8 544
[32] Roenbeck M R, Wei X, Beese A M, Naraghi M, Furmanchuk A o, Paci J T, Schatz G C, Espinosa H D 2014 ACS nano 8 124
[33] Sui C, Luo Q T, He X D, Tong L Y, Zhang K, Zhang Y Y, Zhang Y, Wu J Y, Wang C 2016 Carbon 107 651
[34] Kim D, Cha B J, Guo H, Gao G H, Pennington C, Wong M S, Getachew B A, Han Y M 2024 Nano Lett. 24 6038
[35] Yibibulla T, Jiang Y J, Wang S L, Huang H 2021 Appl. Phys. Lett. 118 043103
[36] Roy A, Ju S-p, Wang S L, Huang H 2019 Nanotechnology 30 065705
[37] Ma L, Jiang Y J, Dai G Z, Mead J L, Yibibulla T, Lu M Y, Huang H, Fatikow S, Wang S L 2022 J. Phys. D: Appl. Phys. 55 364001
[38] Mastrangelo C H, Hsu C H 1992 Technical Digest IEEE Solid-State Sensor and Actuator Workshop Hilton Head, USA, June 22-25, 1992 p208
[39] DelRio F W, de Boer M P, Knapp J A, David Reedy E, Clews P J, Dunn M L 2005 Nat. Mater. 4 629
[40] DelRio F W, Dunn M L, Phinney L M, Bourdon C J, De Boer M P 2007 Appl. Phys. Lett. 90 163104
[41] Chen S L, Li W J, Li X X, Yang W Y 2019 Prog. Mater. Sci 104 138
[42] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301
[43] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Bando Y, Golberg D 2011 Prog. Mater. Sci 56 175
[44] Bergstrom L 1997 Adv. Colloid Interface Sci. 70 125
计量
- 文章访问数: 72
- PDF下载量: 2
- 被引次数: 0