搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲Cu纳米线相干X射线衍射图的计算

高凤菊

引用本文:
Citation:

弯曲Cu纳米线相干X射线衍射图的计算

高凤菊

Calculation of coherent X-ray diffraction from bent Cu nanowires

Gao Feng-Ju
PDF
导出引用
  • 本文提出了一种计算弯曲纳米线的相干X射线衍射图的方法, 即倒空间旋转法. 我们利用该方法计算了弯曲Cu纳米线的相干X射线衍射图, 并与常规方法的计算结果进行了比较. 发现利用倒空间旋转法计算所需的时间约为常规方法的1/(2N+1) (N为镜像盒子的个数). 另外, 倒空间旋转法可以拓展到其他纳米线的变形情况, 如拉伸(压缩)和扭转, 本文也对其作了相应的讨论.
    A method of calculating coherent X-ray diffraction from a bent nanowire, simulated by the molecular dynamics technique under the bent periodic boundary condition, is reported. The segment of nanowire under the X-ray beam consists of the central box and 2N image boxes. X-ray diffraction from this segment of nanowire is obtained from a single calculation of the amplitude of diffraction from the atoms in the central box according to the kinematic theory. Contributions from the image boxes are then obtained by rotations of this amplitude in the reciprocal space and additional phase factors to take into account the position of the image boxes with respect to the central box. This method will be called rotation in the reciprocal space (RRS). Comparison between the RRS and the full calculation of the diffracted amplitude from all the atoms in the central box and the 2N image boxes (full kinematic sum) is done in the Cu nanowire case. The bending of an FCC Cu nanowire oriented along a direction with an equilibrium shape made up of {100} and {111} facets is calculated by using the SMA (The second-moment approximation of the density of states in the tight-binding formalism) potential. The Cartesian x, y, and z axes correspond, respectively, to [112], [111] and [110] directions. The bending occurs in the y-z plane. The calculation time of the RRS method is about 1/(2N+1) times that obtained by doing the full kinematic sum, the RRS method being more efficient when the number of image boxes N is a bigger one. A very small difference in the calculated intensity between the RRS and the full kinematic sum comes from the interpolation in the reciprocal space. So the RRS method is more accurate, when there are more points calculated in the reciprocal space. Similarly, the RRS method can be applied to tension, compression and torsion of the nanowires, When using the molecular dynamics simulation under periodic boundary conditions. In the cases of tension and compression, it is simpler as only the phase factors have to be considered. Results are also reported in this paper.
    • 基金项目: 河北省高等学校科学技术研究项目(批准号:Z2013060)和法国国家科研署项目(批准号:ANR-11-BS10-01401MECANIX)资助的课题.
    • Funds: Project supported by the Program for Science and Technology of University and College, Hebei Provance, China (Grant No. Z2013060), and ANR (Grant No. ANR-11-BS10-01401 MECANIX).
    [1]

    Somogyi A, Tucoulou R, Martinez-Criado G, Homs A, Cauzid J, Bleuet P, Bohic S, Simionovici A 2005 J. Synchrotron Rad. 12 208

    [2]

    Bonanno P L, Gautier S, Gmili Y El, Moudakir T, Sirenko A A, Kazimirov A, Cai Z H, Martin J, Goh W H, Martinez A, Ramdane A, Gratiet L L, Malouf N, Assouar M B, Ougazzaden A 2013 Thin Solid Films. 541 46

    [3]

    Hong X G, Du L C, Ye M P, Weng Y X 2004 Chin. Phys. Soc. 13 720

    [4]

    Wang C L, Tsai S J, Chen J W, Shiu H W, Chang L Y, Lin K H, Hsu H C, Chen Y C, Chen C H, Wu C L 2014 App. Phy. Let. 105 123115

    [5]

    Yamada T, Wang J, Sakata, O, Sandu C S, He Z B, Kamo T, Yasui S, Setter N, Funakubo H 2010 J. Eur. Ceram. Soc. 30 3259

    [6]

    Chamard V, Diaz A, Stangl J, Labat S 2009 J. Strain Anal. Eng. Des. 44 533

    [7]

    Chamard V, Stangl J, Labat S, Mandl B, Lechner R T, Metzger T H 2008 J. Appl. Crystallogr. 41 272

    [8]

    Keplinger M, Kriegner D, Stangl J, ThomasM, Bernhard M, Wintersberger E, Bauer G 2010 Nucl. Instr. Meth. Phys. Res B 268 316

    [9]

    Ren Z, Mastropietro F, Davydok A, Langlais S, Richard M I, Furter J J, Thomas O, Dupraz M, Verdier M, Beutier G, Boesecke P, Cornelius T W 2014 J. Synchrotron Rad. 21 1128

    [10]

    Cai W, Fong W, Elsen E, Weinberger C R 2008 J. Mech. Phys. Solids 56 3242

    [11]

    Rosato V, Guillope M, Legrand B 1989 Philos. Mag. A 59 321

    [12]

    Gailhanou M, Roussel J M 2013 Phy. Rev. B 88 224101

  • [1]

    Somogyi A, Tucoulou R, Martinez-Criado G, Homs A, Cauzid J, Bleuet P, Bohic S, Simionovici A 2005 J. Synchrotron Rad. 12 208

    [2]

    Bonanno P L, Gautier S, Gmili Y El, Moudakir T, Sirenko A A, Kazimirov A, Cai Z H, Martin J, Goh W H, Martinez A, Ramdane A, Gratiet L L, Malouf N, Assouar M B, Ougazzaden A 2013 Thin Solid Films. 541 46

    [3]

    Hong X G, Du L C, Ye M P, Weng Y X 2004 Chin. Phys. Soc. 13 720

    [4]

    Wang C L, Tsai S J, Chen J W, Shiu H W, Chang L Y, Lin K H, Hsu H C, Chen Y C, Chen C H, Wu C L 2014 App. Phy. Let. 105 123115

    [5]

    Yamada T, Wang J, Sakata, O, Sandu C S, He Z B, Kamo T, Yasui S, Setter N, Funakubo H 2010 J. Eur. Ceram. Soc. 30 3259

    [6]

    Chamard V, Diaz A, Stangl J, Labat S 2009 J. Strain Anal. Eng. Des. 44 533

    [7]

    Chamard V, Stangl J, Labat S, Mandl B, Lechner R T, Metzger T H 2008 J. Appl. Crystallogr. 41 272

    [8]

    Keplinger M, Kriegner D, Stangl J, ThomasM, Bernhard M, Wintersberger E, Bauer G 2010 Nucl. Instr. Meth. Phys. Res B 268 316

    [9]

    Ren Z, Mastropietro F, Davydok A, Langlais S, Richard M I, Furter J J, Thomas O, Dupraz M, Verdier M, Beutier G, Boesecke P, Cornelius T W 2014 J. Synchrotron Rad. 21 1128

    [10]

    Cai W, Fong W, Elsen E, Weinberger C R 2008 J. Mech. Phys. Solids 56 3242

    [11]

    Rosato V, Guillope M, Legrand B 1989 Philos. Mag. A 59 321

    [12]

    Gailhanou M, Roussel J M 2013 Phy. Rev. B 88 224101

  • [1] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [2] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [3] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [4] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [5] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [6] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [7] 程志达, 朱静, 孙铁昱. 面心立方单晶镍纳米线稳定性及磁性的第一性原理计算. 物理学报, 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [8] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [9] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [10] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [12] 田惠忱, 刘丽, 文玉华. [110]Au纳米线在加温过程中结构与热稳定性的原子级模拟研究. 物理学报, 2010, 59(3): 1952-1957. doi: 10.7498/aps.59.1952
    [13] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [14] 刘晓旭, 陈贵锋, 李养贤, 徐世峰, 吴光恒, 徐 秋, 王鸿雁, 刘宝海, 师宏伟, 王冀霞, 赵郁海. CoxCu1-x复相纳米线阵列的制备及其磁性的研究. 物理学报, 2008, 57(7): 4527-4533. doi: 10.7498/aps.57.4527
    [15] 吕惠民, 陈光德, 颜国君, 耶红刚. 低温条件下单晶氮化铝纳米线生长机理的研究. 物理学报, 2007, 56(5): 2808-2812. doi: 10.7498/aps.56.2808
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [18] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究. 物理学报, 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  4981
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-12
  • 修回日期:  2015-01-28
  • 刊出日期:  2015-07-05

/

返回文章
返回