搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛细管放电等离子体射流的瞬态辐射热流特性实验研究

刘天旭 王若丹 熊涛 王亚楠 赵政 孙安邦

引用本文:
Citation:

毛细管放电等离子体射流的瞬态辐射热流特性实验研究

刘天旭, 王若丹, 熊涛, 王亚楠, 赵政, 孙安邦

Experimental investigation of transient radiative heat flux characteristics in capillary discharge plasma jets

LIU Tianxu, WANG Ruodan, XIONG Tao, WANG Yanan, ZHAO Zheng, SUN Anbang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 毛细管放电等离子体射流点火装置结构简单可靠,点火效能强,是当前工业和学术领域的研究热点。射流瞬态辐射热流特性是表征射流点火能力的重要手段,本文搭建了基于薄膜量热计的瞬态辐射热流测量系统,针对薄膜探头的测量范围、响应时间和灵敏度提出设计与优化方法;研究了聚乙烯和聚四氟乙烯不同工质情况下,储能电容电压和毛细管直径对输出辐射热流特性的影响。结果表明,毛细管放电辐射热流密度相较于主放电电流具有滞后性,增大系统储能有助于提升主放电沉积能量效率与等离子体温度,进而提升输出辐射热流密度与热流持续时间;增大毛细管直径会减小放电时间常数进而缩短热流持续时间,当毛细管直径从 1.5mm 增加至 3mm 时,辐射热流密度显著提升,而当毛细管直径从 3mm增加至 6mm 时,辐射热流密度随之下降。此外,主放电能量沉积效率、等离子体射流扩展特性以及工质烧蚀特性均会影响辐射热流密度;聚乙烯工质毛细管放电较聚四氟乙烯工质辐射热流密度峰值更高,峰值时间提前且持续时间更短。
    The capillary discharge plasma ignition device features a simple and reliable structure with a high ignition efficiency, and has become a research focus in both industrial applications and academic studies. The transient radiative heat flux characteristics of the plasma jet is a critical indicator for characterizing its ignition capability. In this paper, a transient radiative heat flux measurement system based on a thin-film heatflux gauge is established. Design and optimization methods are proposed to address the measurement range, response time, and sensitivity of the thin-film probe. The results indicate that reducing the thickness of the film enhances measurement sensitivity effectively, whereas changing the film material yields relatively limited improvement. Additionally, the effects of energy storage capacitor voltage and capillary diameter on the output radiative heat flux characteristics are investigated, using polyethylene and polytetrafluoroethylene as capillary propellant. The results indicate that the radiative heat flux of capillary discharge exhibits a temporal delay compared to the main discharge current. Increasing the voltage of the energy storage capacitor enhances the energy deposition efficiency of the main discharge and the plasma temperature, thereby improving both the output radiative heat flux and the duration of the heat flux. Moreover, the growth rate of the heat flux exceeds that of the stored energy. Enlarging the capillary diameter reduces the discharge time constant, thereby shortening the heat flux duration. At the same time, the ablation of the propellant becomes more sufficient, resulting in fewer jet deposits and a weaker absorption of the heat flux. When the capillary diameter increases from 1.5 mm to 3 mm, the jet expansion velocity and the energy deposition efficiency significantly enhanced, leading to a marked increase in the radiative heat flux density. However, when the diameter further increases from 3 mm to 6 mm, the jet expansion velocity changes marginally, while the energy deposition efficiency decreases, resulting in a reduction in radiative heat flux. The capillary discharge with polyethylene propellant exhibits a higher peak radiative heat flux, an earlier peak time, and a shorter duration compared to the polytetrafluoroethylene propellant.
  • [1]

    Taylor M J 2001 IEEE Transactions on Magnetics 37 194

    [2]

    Gebhart T E, Martinez-Rodriguez R A, Baylor L R, Rapp J, Winfrey A L 2017 Journal of Applied Physics 122 063302

    [3]

    Gebhart T E, Baylor L R, Rapp J, Winfrey A L 2018 Journal of Applied Physics 123 033301

    [4]

    Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2020 Journal of propulsion Technology. 41 149 (in Chinese)[王亚楠, 葛崇剑, 程乐, 丁卫东, 耿金越 2020 推 进技术 41 149]

    [5]

    Winfrey A L, Bourham M A 2013 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013) San Francisco, CA, USA, June 16-21, 2013 p1

    [6]

    Yang W H, Hang Y H, Fan H, Chen L, Li X W, Murphy A B 2019 J. Phys. D:Appl. Phys. 53 075204

    [7]

    Jiang S, Chen L, Shi H T, He Y Z, Li X W 2023 IEEE Transactions on Plasma Science 51 1117

    [8]

    Li J, Litzinger T A, Thynell S T 2005 Journal of Propulsion and Power 21 44

    [9]

    Li J, Litzinger T A, Thynell S T 2004 Journal of Propulsion and Power 20 675

    [10]

    Wang Q, Yang W H, Hang Y H, Fan H, Li X W 2019 J. Phys. D-Appl. Phys. 52 334002

    [11]

    Wang Q, Hang Y H, Li X W, Jia S L 2019 IEEE Trans. Plasma Sci. 47 1950

    [12]

    Morgan T W, De Kruif T M, Van Der Meiden H J, Van Den Berg M A, Scholten J, Melissen W, Krijger B J M, Bardin S, De Temmerman G 2014 Plasma Phys. Control. Fusion 56 095004

    [13]

    Porwitzky A J, Keidar M, Boyd I D 2007 Propellants, Explosives, Pyrotechnics 32 385

    [14]

    Porwitzky A J, Keidar M, Boyd I D 2007 IEEE Transactions on Magnetics 43 313

    [15]

    Yang W H, Jiang S, Chen L, Li X W, Gu K Q, He Y Z, Li W H 2021 Physics of Plasmas 28 113503

    [16]

    Liu S, Xu T, Shi Y H, Zhan W, Liu C Y, Lu Z J, Yang L J 2022 Review of Scientific Instruments 93 103544

    [17]

    Spielman R B, Deeney C, Fehl D L, Hanson D L, Keltner N R, McGurn J S, McKenney J L 1999 Review of Scientific Instruments 70 651

    [18]

    Das M K, Thynell S T 2006 Journal of Thermophysics and Heat Transfer 20 903

    [19]

    Das M, Thynell S T, Li J, Litzinger T A 2005 Journal of Thermophysics and Heat Transfer 19 572

    [20]

    Jiang S, Yang W H, Chen L, Li W H, Li X W, Shi H T 2022 Proceedings of the CSEE 42 415 (in Chinese)[蒋仕, 杨伟鸿, 陈立, 李伟昊, 李兴文, 石桓通 2022 中 国电机工程学报 42 415]

    [21]

    Starner K 1968 ISA Trans. 7 181

    [22]

    Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th ed.) (Boca Raton:CRC Press) pp 2097-2289

    [23]

    Liu T X, Cheng R Z, Wang R D, Zhao Z, Wang Y N, Sun A B 2024 Review of Scientific Instruments 95 093540

    [24]

    Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 312 (in Chinese)[王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 物理学报 70 312]

    [25]

    Zhang J B, Li X W, Yang W H, Yan W R, Wei D, Liu Y, Yan G H 2018 Physics of Plasmas 25 103501

    [26]

    Keidar M, Boyd I D, Beilis I I 2001 J. Phys. D:Appl. Phys. 34 1675

    [27]

    Li R, Li X W, Jia S L, Murphy A B, Shi Z Q 2010 IEEE Transactions on Plasma Science 38 1033

  • [1] 李秀如, 刘雅璐, 马佳昱, 吴玉婷, 王成会, 莫润阳. 刚性毛细管内微气泡弹跳行为. 物理学报, doi: 10.7498/aps.74.20250968
    [2] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究. 物理学报, doi: 10.7498/aps.71.20212435
    [3] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, doi: 10.7498/aps.70.20211198
    [4] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性. 物理学报, doi: 10.7498/aps.68.20190902
    [5] 刘涛, 赵永蓬, 崔怀愈, 刘晓琳. 基于双程放大的毛细管放电69.8 nm激光增益特性. 物理学报, doi: 10.7498/aps.68.20181617
    [6] 吕月兰, 尹向宝, 孙伟民, 刘永军, 苑立波. 染料掺杂液晶填充毛细管的激光发射特性研究. 物理学报, doi: 10.7498/aps.67.20171844
    [7] 刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉. 毛细管放电类氖氩69.8 nm激光增益特性研究. 物理学报, doi: 10.7498/aps.66.155201
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, doi: 10.7498/aps.65.095201
    [9] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, doi: 10.7498/aps.64.124703
    [10] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, doi: 10.7498/aps.62.245204
    [11] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, doi: 10.7498/aps.60.095202
    [12] 黄文同, 李寿哲, 王德真, 马腾才. 大气压下绝缘毛细管内等离子体放电及其特性研究. 物理学报, doi: 10.7498/aps.59.4110
    [13] 郭铁英, 娄淑琴, 李宏雷, 简水生. 用于制作光子晶体光纤的毛细管的拉制理论与实验分析. 物理学报, doi: 10.7498/aps.58.4724
    [14] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, doi: 10.7498/aps.56.308
    [15] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, doi: 10.7498/aps.55.4734
    [16] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, doi: 10.7498/aps.55.344
    [17] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, doi: 10.7498/aps.55.733
    [18] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, doi: 10.7498/aps.54.2731
    [19] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, doi: 10.7498/aps.54.4979
    [20] 顾梅梅, 张鹏翔, 李国桢. 超巨磁阻测辐射热仪. 物理学报, doi: 10.7498/aps.49.1567
计量
  • 文章访问数:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-10

/

返回文章
返回