-
毛细管放电等离子体射流点火装置结构简单可靠,点火效能强,是当前工业和学术领域的研究热点。射流瞬态辐射热流特性是表征射流点火能力的重要手段,本文搭建了基于薄膜量热计的瞬态辐射热流测量系统,针对薄膜探头的测量范围、响应时间和灵敏度提出设计与优化方法;研究了聚乙烯和聚四氟乙烯不同工质情况下,储能电容电压和毛细管直径对输出辐射热流特性的影响。结果表明,毛细管放电辐射热流密度相较于主放电电流具有滞后性,增大系统储能有助于提升主放电沉积能量效率与等离子体温度,进而提升输出辐射热流密度与热流持续时间;增大毛细管直径会减小放电时间常数进而缩短热流持续时间,当毛细管直径从 1.5mm 增加至 3mm 时,辐射热流密度显著提升,而当毛细管直径从 3mm增加至 6mm 时,辐射热流密度随之下降。此外,主放电能量沉积效率、等离子体射流扩展特性以及工质烧蚀特性均会影响辐射热流密度;聚乙烯工质毛细管放电较聚四氟乙烯工质辐射热流密度峰值更高,峰值时间提前且持续时间更短。The capillary discharge plasma ignition device features a simple and reliable structure with a high ignition efficiency, and has become a research focus in both industrial applications and academic studies. The transient radiative heat flux characteristics of the plasma jet is a critical indicator for characterizing its ignition capability. In this paper, a transient radiative heat flux measurement system based on a thin-film heatflux gauge is established. Design and optimization methods are proposed to address the measurement range, response time, and sensitivity of the thin-film probe. The results indicate that reducing the thickness of the film enhances measurement sensitivity effectively, whereas changing the film material yields relatively limited improvement. Additionally, the effects of energy storage capacitor voltage and capillary diameter on the output radiative heat flux characteristics are investigated, using polyethylene and polytetrafluoroethylene as capillary propellant. The results indicate that the radiative heat flux of capillary discharge exhibits a temporal delay compared to the main discharge current. Increasing the voltage of the energy storage capacitor enhances the energy deposition efficiency of the main discharge and the plasma temperature, thereby improving both the output radiative heat flux and the duration of the heat flux. Moreover, the growth rate of the heat flux exceeds that of the stored energy. Enlarging the capillary diameter reduces the discharge time constant, thereby shortening the heat flux duration. At the same time, the ablation of the propellant becomes more sufficient, resulting in fewer jet deposits and a weaker absorption of the heat flux. When the capillary diameter increases from 1.5 mm to 3 mm, the jet expansion velocity and the energy deposition efficiency significantly enhanced, leading to a marked increase in the radiative heat flux density. However, when the diameter further increases from 3 mm to 6 mm, the jet expansion velocity changes marginally, while the energy deposition efficiency decreases, resulting in a reduction in radiative heat flux. The capillary discharge with polyethylene propellant exhibits a higher peak radiative heat flux, an earlier peak time, and a shorter duration compared to the polytetrafluoroethylene propellant.
-
Keywords:
- Capillary discharge /
- thin-film heatflux gauge /
- radiative heat flux /
- transient characteristics
-
[1] Taylor M J 2001 IEEE Transactions on Magnetics 37 194
[2] Gebhart T E, Martinez-Rodriguez R A, Baylor L R, Rapp J, Winfrey A L 2017 Journal of Applied Physics 122 063302
[3] Gebhart T E, Baylor L R, Rapp J, Winfrey A L 2018 Journal of Applied Physics 123 033301
[4] Wang Y N, Ge C J, Cheng L, Ding W D, Geng J Y 2020 Journal of propulsion Technology. 41 149 (in Chinese)[王亚楠, 葛崇剑, 程乐, 丁卫东, 耿金越 2020 推 进技术 41 149]
[5] Winfrey A L, Bourham M A 2013 2013 IEEE Pulsed Power and Plasma Science Conference (PPPS 2013) San Francisco, CA, USA, June 16-21, 2013 p1
[6] Yang W H, Hang Y H, Fan H, Chen L, Li X W, Murphy A B 2019 J. Phys. D:Appl. Phys. 53 075204
[7] Jiang S, Chen L, Shi H T, He Y Z, Li X W 2023 IEEE Transactions on Plasma Science 51 1117
[8] Li J, Litzinger T A, Thynell S T 2005 Journal of Propulsion and Power 21 44
[9] Li J, Litzinger T A, Thynell S T 2004 Journal of Propulsion and Power 20 675
[10] Wang Q, Yang W H, Hang Y H, Fan H, Li X W 2019 J. Phys. D-Appl. Phys. 52 334002
[11] Wang Q, Hang Y H, Li X W, Jia S L 2019 IEEE Trans. Plasma Sci. 47 1950
[12] Morgan T W, De Kruif T M, Van Der Meiden H J, Van Den Berg M A, Scholten J, Melissen W, Krijger B J M, Bardin S, De Temmerman G 2014 Plasma Phys. Control. Fusion 56 095004
[13] Porwitzky A J, Keidar M, Boyd I D 2007 Propellants, Explosives, Pyrotechnics 32 385
[14] Porwitzky A J, Keidar M, Boyd I D 2007 IEEE Transactions on Magnetics 43 313
[15] Yang W H, Jiang S, Chen L, Li X W, Gu K Q, He Y Z, Li W H 2021 Physics of Plasmas 28 113503
[16] Liu S, Xu T, Shi Y H, Zhan W, Liu C Y, Lu Z J, Yang L J 2022 Review of Scientific Instruments 93 103544
[17] Spielman R B, Deeney C, Fehl D L, Hanson D L, Keltner N R, McGurn J S, McKenney J L 1999 Review of Scientific Instruments 70 651
[18] Das M K, Thynell S T 2006 Journal of Thermophysics and Heat Transfer 20 903
[19] Das M, Thynell S T, Li J, Litzinger T A 2005 Journal of Thermophysics and Heat Transfer 19 572
[20] Jiang S, Yang W H, Chen L, Li W H, Li X W, Shi H T 2022 Proceedings of the CSEE 42 415 (in Chinese)[蒋仕, 杨伟鸿, 陈立, 李伟昊, 李兴文, 石桓通 2022 中 国电机工程学报 42 415]
[21] Starner K 1968 ISA Trans. 7 181
[22] Haynes W M 2016 CRC Handbook of Chemistry and Physics (97th ed.) (Boca Raton:CRC Press) pp 2097-2289
[23] Liu T X, Cheng R Z, Wang R D, Zhao Z, Wang Y N, Sun A B 2024 Review of Scientific Instruments 95 093540
[24] Wang Y N, Ren L Y, Ding W D, Sun A B, Geng J Y 2021 Acta Phys. Sin. 70 312 (in Chinese)[王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越 2021 物理学报 70 312]
[25] Zhang J B, Li X W, Yang W H, Yan W R, Wei D, Liu Y, Yan G H 2018 Physics of Plasmas 25 103501
[26] Keidar M, Boyd I D, Beilis I I 2001 J. Phys. D:Appl. Phys. 34 1675
[27] Li R, Li X W, Jia S L, Murphy A B, Shi Z Q 2010 IEEE Transactions on Plasma Science 38 1033
计量
- 文章访问数: 18
- PDF下载量: 0
- 被引次数: 0