-
本文在GaN基共振腔发光二极管(RCLED)顶部设计制备了高反膜结构分布式布拉格反射镜(DBR)和滤波器结构DBR, 对比分析了两种反射镜的反射率曲线特征以及对应的RCLED器件的光输出纵模模式、光谱线宽和输出光强等性能差异, 详细研究了顶部反射镜的光反射特性对RCLED器件输出光谱性能的影响机理. 研究结果表明, 顶部反射镜是RCLED的重要组成部分, 其反射率曲线特征决定器件的光输出性能. 常规高反膜结构DBR顶部反射镜的反射率曲线具有较宽的高反射带, 将其作为顶部反射镜可有效压窄RCLED发光纵模线宽, 但是发光光谱仍呈现多纵模光输出特征. 滤波器结构DBR顶部反射镜的反射率曲线在中心波长处具有较窄的透光凹带, 利用透光凹带对输出光的调制作用, 器件可实现单纵模光输出, 在光通信、光纤传感等领域展示了广阔的应用前景. 通过进一步设计RCLED顶部反射镜结构, 可以改变其反射率曲线特性, 进而优化RCLED器件的输出光谱特性, 以满足器件在多个领域的应用需求.In this paper, two kinds of distributed Bragg reflectors (DBRs) with high-reflective-film structure and filter structure are designed and evaporated on the top of GaN-based resonant cavity light emitting diode (RCLED), respectively. Firstly, the reflectivity spectra of the two kinds of DBRs are simulated. Then, the differences in performance including optical longitudinal modes, spectral linewidth, and output light intensity between the two kinds of RCLED devices with different top mirrors, are compared and analyzed. Finally, the influence of the top mirror reflection characteristics on the output spectrum of the RCLED is studied in detail. The results show that the top mirror is an important part of RCLED, and its reflection characteristics determine the optical performance of the device. For the conventional DBR with high-reflective-film structure, its reflectivity spectrum has a wide high-reflection band. Accordingly, the spectral linewidth of the RCLED can be effectively narrowed by using the conventional DBR as the top mirror. However, the spectrum still consists of multi-longitudinal modes. For the DBR with filter structure, its reflectivity spectrum has a narrow high-transmittance band at the central wavelength. Depending on the modulation effect of the high-transmittance band to the output light, single longitudinal mode light emission is realized for the RCLED with the specially designed DBR as the top mirror, which shows a broad application prospect in optical communication and optical fiber sensing. Moreover, the spectral characteristics of the RCLED can be further optimized to meet its application requirements in much more fields, by designing the top mirror structure and changing its reflectivity spectrum characteristics.
-
Keywords:
- GaN-based RCLED /
- DBR with high-reflective-film structure /
- DBR with filter structure /
- single-longitudinal-mode light emission
[1] Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237Google Scholar
[2] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar
[3] Wang W L, Lin Y H, Li Y, Li X C, Huang L G, Zheng Y L, Lin Z T, Wang H Y, Li G Q 2018 J. Mater. Chem. C 6 1642Google Scholar
[4] Ricardo X G, Ferreira, Enyuan X, Jonathan J D, Sujan R, Hyunchae C, Grahame F, Scott W, Anthony E, Erdan G, Richard V, Ian H, Dominic C, Martin D 2019 IEEE Photonics Technol. Lett. 28 2023Google Scholar
[5] RoycroftB, Akhter M, Masskant P, Mierry P, Fernandez S, Naranjo F B, Calleja E, Mccormack T, Corbett B 2002 Phys. Stat. Sol. 192 97Google Scholar
[6] Benisty H, Neve H D, Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612Google Scholar
[7] Chu Y C, Su Y K, Chao C H, Yeh W Y 2013 Jpn. J. Appl. Phys. 52 01AG03Google Scholar
[8] Tsai C L, Xu Z F 2013 IEEE Photonics Technol. Lett. 25 1793Google Scholar
[9] Tsai C L, Lu Y C, Ko S C 2016 IEEE Trans. Electron Devices 63 2802Google Scholar
[10] 李建军, 曹红康, 邓军, 文振宇, 邹德恕, 周晓倩, 杨启伟 2020 光学学报 40 1526002Google Scholar
Li J J, Cao H K, Deng J, Wen Z Y, Zou D S, Zhou X Q, Yang Q W 2020 Acta Opt. Sin. 40 1526002Google Scholar
[11] Schubert E F, Wang Y H, Cho A Y, Tu L W, Zydzik G J 1992 Appl. Phys. Lett. 60 921Google Scholar
[12] Horng R H, Wang W K, Huang S Y, Wuu D S 2006 IEEE Photonics Technol. Lett. 18 457Google Scholar
[13] Shaw A J, Bradley A L, Donegan J F, Lunney J G 2004 IEEE Photonics Technol. Lett. 16 2006Google Scholar
[14] Tsai C L, Lu Y C, Ko S C 2016 IEEE Transactions on Electron Devices 63 2802
[15] Dorsaz J, Carlin J F, Zellweger C M, Gradecak S, Ilegems M 2004 Phys. Stat. Sol. 201 2675Google Scholar
[16] Hu X L, Zhang J Y, Liu W J, Chen M, Zhang B P, Xu B S, Wang Q M 2001 Electron. Lett. 47 986Google Scholar
[17] Yang Y, Ji Q B, Zong H, Yan T X, Li J C, Wei T T, Hu X D 2016 Opt. Commun. 374 80Google Scholar
[18] Zhou LM, Ren B C, Zheng Z W, Ying L Y, Long H, Zhang B P 2018 ECS J. Solid State Sci. Technol. 7 34Google Scholar
[19] Cai W, Yuan J L, Ni S Y, Shi Z, Zhou W D, Liu Y H, Wang Y J, Hiroshi A 2019 Appl. Phys. Express 12 032004Google Scholar
[20] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 物理学报 58 6304Google Scholar
Li J J, Yang Z, HaN J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304Google Scholar
[21] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 物理学报 59 8615Google Scholar
Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615Google Scholar
[22] Capmany J, Mriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125Google Scholar
-
图 10 顶部没有蒸镀反射镜(黑色线)、蒸镀高反膜DBR(红色线)和滤波器结构DBR(蓝色线)RCLED器件在垂直出光面方向测试的电致发光光谱
Fig. 10. Measured electroluminescence spectra perpendicular to the light emitting surface for the RCLEDs without DBR (black line), with top high-reflective-film structure DBR (red line) and with filter structure DBR (blue line), respectively.
-
[1] Strite S, Morkoc H 1992 J. Vac. Sci. Technol. B 10 1237Google Scholar
[2] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar
[3] Wang W L, Lin Y H, Li Y, Li X C, Huang L G, Zheng Y L, Lin Z T, Wang H Y, Li G Q 2018 J. Mater. Chem. C 6 1642Google Scholar
[4] Ricardo X G, Ferreira, Enyuan X, Jonathan J D, Sujan R, Hyunchae C, Grahame F, Scott W, Anthony E, Erdan G, Richard V, Ian H, Dominic C, Martin D 2019 IEEE Photonics Technol. Lett. 28 2023Google Scholar
[5] RoycroftB, Akhter M, Masskant P, Mierry P, Fernandez S, Naranjo F B, Calleja E, Mccormack T, Corbett B 2002 Phys. Stat. Sol. 192 97Google Scholar
[6] Benisty H, Neve H D, Weisbuch C 1998 IEEE J. Quantum Electron. 34 1612Google Scholar
[7] Chu Y C, Su Y K, Chao C H, Yeh W Y 2013 Jpn. J. Appl. Phys. 52 01AG03Google Scholar
[8] Tsai C L, Xu Z F 2013 IEEE Photonics Technol. Lett. 25 1793Google Scholar
[9] Tsai C L, Lu Y C, Ko S C 2016 IEEE Trans. Electron Devices 63 2802Google Scholar
[10] 李建军, 曹红康, 邓军, 文振宇, 邹德恕, 周晓倩, 杨启伟 2020 光学学报 40 1526002Google Scholar
Li J J, Cao H K, Deng J, Wen Z Y, Zou D S, Zhou X Q, Yang Q W 2020 Acta Opt. Sin. 40 1526002Google Scholar
[11] Schubert E F, Wang Y H, Cho A Y, Tu L W, Zydzik G J 1992 Appl. Phys. Lett. 60 921Google Scholar
[12] Horng R H, Wang W K, Huang S Y, Wuu D S 2006 IEEE Photonics Technol. Lett. 18 457Google Scholar
[13] Shaw A J, Bradley A L, Donegan J F, Lunney J G 2004 IEEE Photonics Technol. Lett. 16 2006Google Scholar
[14] Tsai C L, Lu Y C, Ko S C 2016 IEEE Transactions on Electron Devices 63 2802
[15] Dorsaz J, Carlin J F, Zellweger C M, Gradecak S, Ilegems M 2004 Phys. Stat. Sol. 201 2675Google Scholar
[16] Hu X L, Zhang J Y, Liu W J, Chen M, Zhang B P, Xu B S, Wang Q M 2001 Electron. Lett. 47 986Google Scholar
[17] Yang Y, Ji Q B, Zong H, Yan T X, Li J C, Wei T T, Hu X D 2016 Opt. Commun. 374 80Google Scholar
[18] Zhou LM, Ren B C, Zheng Z W, Ying L Y, Long H, Zhang B P 2018 ECS J. Solid State Sci. Technol. 7 34Google Scholar
[19] Cai W, Yuan J L, Ni S Y, Shi Z, Zhou W D, Liu Y H, Wang Y J, Hiroshi A 2019 Appl. Phys. Express 12 032004Google Scholar
[20] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地 2009 物理学报 58 6304Google Scholar
Li J J, Yang Z, HaN J, Deng J, Zou D S, Kang Y Z, Ding L, Shen G D 2009 Acta Phys. Sin. 58 6304Google Scholar
[21] 李卓轩, 裴丽, 祁春慧, 彭万敬, 宁提纲, 赵瑞峰, 高嵩 2010 物理学报 59 8615Google Scholar
Li Z X, Pei L, Qi C H, Peng W J, Ning T G, Zhao R F, Gao S 2010 Acta Phys. Sin. 59 8615Google Scholar
[22] Capmany J, Mriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125Google Scholar
计量
- 文章访问数: 5037
- PDF下载量: 131
- 被引次数: 0