搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带虚设层的抗反射结构导模共振滤波器设计与分析

桑田 蔡托 刘芳 蔡绍洪 张大伟

引用本文:
Citation:

带虚设层的抗反射结构导模共振滤波器设计与分析

桑田, 蔡托, 刘芳, 蔡绍洪, 张大伟

Design and analysis of guided-mode resonance filter containing an absentee layer with an antireflective surface

Sang Tian, Cai Tuo, Liu Fang, Cai Shao-Hong, Zhang Da-Wei
PDF
导出引用
  • 提出带虚设层的抗反射导模共振滤波器结构及设计方法, 该方法适用于任意角度入射带虚设层的抗反射结构导模共振滤波器设计与分析. 得到带虚设层的导模共振滤波器抗反射结构所满足的关系式. 指出在维持虚设层光学厚度不变的情况下, 可以通过不同选材, 在低反射旁带中实现等带宽不同波长的选择. 此外, 由于结构的抗反射特性在低角范围内具有较大的角度容差, 改变入射角, 可以实现滤波波长及光谱带宽在宽光谱范围内的准线性可调谐.
    A design approach to guided-mode resonance filter containing an absentee layer with an antireflective surface is presented. This design approach is reliable for the design and analysis of guided-mode resonance filter containing an absentee layer with an antireflective surface at an arbitrary incidence. The antireflection condition of guided-mode resonance filter containing an absentee layer is obtained. For the absentee layer with a fixed optical thickness, the resonance wavelength can be selected, with the low-sideband features and the filter linewidth kept almost the same by using different materials. In addition, the resonance wavelength and its linewidth can be tuned almost linearly in a broad spectral band as the incident angle is varied due to high angular tolerance of the antireflection features of the filter in the range of small angle.
    • 基金项目: 国家自然科学基金(批准号: 60908021, 11264005, 10647005, 11064010)、 贵州省科学技术基金(批准号: 20112097)和贵州省教育厅自然科学项目(2011029)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 60908021, 11264005, 10647005 and 11064010), the Science and Technology Foundation of Guizhou Province (Grant. No. 20112097), and the Natural Science Foundation of the Department of Education of Guizhou Province (Grant. No. 2011029).
    [1]

    Golubenko A, Svakhin A S, Sychugov V A, Tishchenko A V 1985 Sov. J. Quantum Electron. 15 886

    [2]

    Popov E, Mashev L, Maystre D 1986 Opt. Acta 33 607

    [3]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022

    [4]

    Sun T Y, Ma J Y, Fu X Y, Wang J P, Jin Y X, Shao J D, Fan Z X 2010 Chin. Opt. Lett. 8 447

    [5]

    Ma J Y, Liu S J, Wei C Y, Jin Y X, Zhao Y A, Shao J D, Fan Z X 2008 Acta. Phys. Sin. 57 4195 (in Chinese) [麻健勇, 刘世杰, 魏朝阳, 晋云霞, 赵元安, 邵建达, 范正修 2008 物理学报 57 4195]

    [6]

    Ye Y, Chen L S 2008 Acta Opt. Sin. 28 2255 (in Chinese) [叶燕, 陈林森 2008 光学学报 28 2255]

    [7]

    Zhang D W, Wang Q, Zhu Y M, Huang Y S, Ni Z J, Zhuang S L 2010 Chin. J. Lasers 37 950 (in Chinese) [张大伟, 王琦, 朱亦鸣, 黄元申, 倪争技, 庄松林 2010 中国激光 37 950]

    [8]

    Song J Y, Feng S F, Zhang X P, Liu H M, Song Y R 2009 Acta. Phys. Sin. 58 6542 (in Chinese) [宋娇阳, 冯胜飞, 张新平, 刘红梅, 宋晏蓉 2009 物理学报 58 6542]

    [9]

    Fu X Y, Yi K, Shao J D, Fan Z X 2009 Opt. Lett. 34 124

    [10]

    Guo C C, Ye W M, Yuan X D, Zeng C, Ji J R 2010 Acta Opt. Sin. 30 2690 (in Chinese) [郭楚才, 叶卫民, 袁晓东, 曾淳, 季家镕 2010 光学学报 30 2690]

    [11]

    Katchalski T, Levy-Yurista G, Friesem A A, Martin G, Hierle R, Zyss J 2005 Opt. Express 13 4645

    [12]

    Wang Q, Zhang D W, Huang Y S, Ni Z J, Chen J B, Zhong Y W, Zhuang S L 2010 Opt. Lett. 35 1236

    [13]

    Sang T, Cai T, Cai S H, Wang Z S 2011 J. Opt. 13 125706

    [14]

    Wang Z H, Wu Y G, Ling L J, Xia Z H, Chen N B, Liu R C 2011 Acta Opt. Sin. 31 0505002 (in Chinese) [王振华, 吴永刚, 凌磊婕, 夏子奂, 陈乃波, 刘仁臣 2011 光学学报 31 0505002]

    [15]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Acta. Phys. Sin. 59 3119 (in Chinese) [汪剑鹏, 晋云霞, 麻健勇, 邵建达, 范正修 2010 物理学报 59 3119]

    [16]

    Sang T, Wang L, Ji S Y, Chen H, Wang Z S 2009 J. Opt. Soc. Am. A 26 559

    [17]

    Zhou Z P, Wu H M, Feng J B, Hou J, Yi H X, Wang X J 2010 J. Nanophoton 4 041001

    [18]

    Sang T, Wang Z S, Zhou X, Cai S H 2010 Appl. Phys. Lett. 97 071107

    [19]

    Wang Z H, Wu Y G, Xia Z H, Liu R C, Lv G, Wu H Y, Tang P L 2011 Chin. Opt. Lett. 9 080501

    [20]

    Mizutani A, Kikuta H, Iwata K, Toyota H 2002 J. Opt. Soc. Am. A 19 1346

    [21]

    Magnusson R, Shin D, Liu Z S 1998 Opt. Lett. 23 612

    [22]

    Shin D, Liu Z S, Magnusson R 2002 Opt. Lett. 27 1288

    [23]

    Sang T, Zhao H, Cai S H, Wang Z S 2012 Opt. Commun. 285 258

    [24]

    Rytov S M 1956 Sov. Phys. JETP 2 466

    [25]

    Macleod H A 2001 Thin-film optical filter (3rded) (London: IOP) P41

    [26]

    Wang S S, Magnusson R 1993 Appl. Opt. 32 2606

    [27]

    Cao Z Q 2007 Waveguide optics (Beijing: Science Press) P40 (in Chinese) [曹庄琪 2007 导波光学 (北京: 科学出版社) 第40页]

    [28]

    Mateus C F R, Huang M C Y, Deng Y F, Neureuther A R, Hasnain C J C 2004 IEEE Photon. Technol. Lett. 16 518

    [29]

    Wu M L, Hsu C L, Liu Y C, Wang C M, Chang J Y 2006 Opt. Lett. 31 3333

    [30]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

  • [1]

    Golubenko A, Svakhin A S, Sychugov V A, Tishchenko A V 1985 Sov. J. Quantum Electron. 15 886

    [2]

    Popov E, Mashev L, Maystre D 1986 Opt. Acta 33 607

    [3]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022

    [4]

    Sun T Y, Ma J Y, Fu X Y, Wang J P, Jin Y X, Shao J D, Fan Z X 2010 Chin. Opt. Lett. 8 447

    [5]

    Ma J Y, Liu S J, Wei C Y, Jin Y X, Zhao Y A, Shao J D, Fan Z X 2008 Acta. Phys. Sin. 57 4195 (in Chinese) [麻健勇, 刘世杰, 魏朝阳, 晋云霞, 赵元安, 邵建达, 范正修 2008 物理学报 57 4195]

    [6]

    Ye Y, Chen L S 2008 Acta Opt. Sin. 28 2255 (in Chinese) [叶燕, 陈林森 2008 光学学报 28 2255]

    [7]

    Zhang D W, Wang Q, Zhu Y M, Huang Y S, Ni Z J, Zhuang S L 2010 Chin. J. Lasers 37 950 (in Chinese) [张大伟, 王琦, 朱亦鸣, 黄元申, 倪争技, 庄松林 2010 中国激光 37 950]

    [8]

    Song J Y, Feng S F, Zhang X P, Liu H M, Song Y R 2009 Acta. Phys. Sin. 58 6542 (in Chinese) [宋娇阳, 冯胜飞, 张新平, 刘红梅, 宋晏蓉 2009 物理学报 58 6542]

    [9]

    Fu X Y, Yi K, Shao J D, Fan Z X 2009 Opt. Lett. 34 124

    [10]

    Guo C C, Ye W M, Yuan X D, Zeng C, Ji J R 2010 Acta Opt. Sin. 30 2690 (in Chinese) [郭楚才, 叶卫民, 袁晓东, 曾淳, 季家镕 2010 光学学报 30 2690]

    [11]

    Katchalski T, Levy-Yurista G, Friesem A A, Martin G, Hierle R, Zyss J 2005 Opt. Express 13 4645

    [12]

    Wang Q, Zhang D W, Huang Y S, Ni Z J, Chen J B, Zhong Y W, Zhuang S L 2010 Opt. Lett. 35 1236

    [13]

    Sang T, Cai T, Cai S H, Wang Z S 2011 J. Opt. 13 125706

    [14]

    Wang Z H, Wu Y G, Ling L J, Xia Z H, Chen N B, Liu R C 2011 Acta Opt. Sin. 31 0505002 (in Chinese) [王振华, 吴永刚, 凌磊婕, 夏子奂, 陈乃波, 刘仁臣 2011 光学学报 31 0505002]

    [15]

    Wang J P, Jin Y X, Ma J Y, Shao J D, Fan Z X 2010 Acta. Phys. Sin. 59 3119 (in Chinese) [汪剑鹏, 晋云霞, 麻健勇, 邵建达, 范正修 2010 物理学报 59 3119]

    [16]

    Sang T, Wang L, Ji S Y, Chen H, Wang Z S 2009 J. Opt. Soc. Am. A 26 559

    [17]

    Zhou Z P, Wu H M, Feng J B, Hou J, Yi H X, Wang X J 2010 J. Nanophoton 4 041001

    [18]

    Sang T, Wang Z S, Zhou X, Cai S H 2010 Appl. Phys. Lett. 97 071107

    [19]

    Wang Z H, Wu Y G, Xia Z H, Liu R C, Lv G, Wu H Y, Tang P L 2011 Chin. Opt. Lett. 9 080501

    [20]

    Mizutani A, Kikuta H, Iwata K, Toyota H 2002 J. Opt. Soc. Am. A 19 1346

    [21]

    Magnusson R, Shin D, Liu Z S 1998 Opt. Lett. 23 612

    [22]

    Shin D, Liu Z S, Magnusson R 2002 Opt. Lett. 27 1288

    [23]

    Sang T, Zhao H, Cai S H, Wang Z S 2012 Opt. Commun. 285 258

    [24]

    Rytov S M 1956 Sov. Phys. JETP 2 466

    [25]

    Macleod H A 2001 Thin-film optical filter (3rded) (London: IOP) P41

    [26]

    Wang S S, Magnusson R 1993 Appl. Opt. 32 2606

    [27]

    Cao Z Q 2007 Waveguide optics (Beijing: Science Press) P40 (in Chinese) [曹庄琪 2007 导波光学 (北京: 科学出版社) 第40页]

    [28]

    Mateus C F R, Huang M C Y, Deng Y F, Neureuther A R, Hasnain C J C 2004 IEEE Photon. Technol. Lett. 16 518

    [29]

    Wu M L, Hsu C L, Liu Y C, Wang C M, Chang J Y 2006 Opt. Lett. 31 3333

    [30]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

  • [1] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [2] 石俊凯, 王国名, 黎尧, 高书苑, 刘立拓, 周维虎. 滤波对8字腔掺铒光纤激光器锁模运转的影响. 物理学报, 2019, 68(6): 064206. doi: 10.7498/aps.68.20182144
    [3] 李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才. 利用光反馈多模激光器结合滤波器产生平坦混沌. 物理学报, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [4] 柴金华, 陈飞. 准平行光干涉的滤波型多抖动相控方法研究. 物理学报, 2018, 67(1): 014202. doi: 10.7498/aps.67.20171562
    [5] 曾志斌, 姚引娣, 庄奕琪. 一种采用互补结构的宽阻带共模缺陷地滤波器. 物理学报, 2015, 64(16): 164101. doi: 10.7498/aps.64.164101
    [6] 张然, 曹小文, 徐微微, Haraguchi Masanobu, 高炳荣. 抗反射疏水红外窗口的制备研究. 物理学报, 2014, 63(5): 054201. doi: 10.7498/aps.63.054201
    [7] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [8] 张铮, 徐智谋, 孙堂友, 何健, 徐海峰, 张学明, 刘世元. 硅表面抗反射纳米周期阵列结构的纳米压印制备与性能研究. 物理学报, 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [9] 刘杰, 刘邦武, 夏洋, 李超波, 刘肃. 等离子体浸没离子注入制备黑硅抗反射层及其光学特性研究. 物理学报, 2012, 61(14): 148102. doi: 10.7498/aps.61.148102
    [10] 刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. 刻划微棱锥抗反射层的GaP太赫兹波发射器. 物理学报, 2012, 61(4): 040703. doi: 10.7498/aps.61.040703
    [11] 张斌, 潘雪丰, 陶卫东. 新型内反射旋光光学滤波器研究. 物理学报, 2011, 60(5): 054214. doi: 10.7498/aps.60.054214
    [12] 冯爱霞, 龚志强, 王启光, 孙树鹏, 封国林. 北半球环流系统季节内及年际以上振荡信号的信息传输. 物理学报, 2011, 60(5): 059205. doi: 10.7498/aps.60.059205
    [13] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 含侧腔的机械抗混叠声低通滤波光纤水听器. 物理学报, 2009, 58(12): 8352-8356. doi: 10.7498/aps.58.8352
    [14] 王明军, 王兴元. 基于一阶时滞混沌系统参数辨识的保密通信方案. 物理学报, 2009, 58(3): 1467-1472. doi: 10.7498/aps.58.1467
    [15] 朱言午, 石顺祥, 刘继芳, 孙艳玲. 用于THz波段脉冲空间整形的滤波透镜的电磁场分析. 物理学报, 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [16] 麻健勇, 刘世杰, 魏朝阳, 晋云霞, 赵元安, 邵建达, 范正修. 可见光波段双层浮雕型导模共振滤波器设计与分析. 物理学报, 2008, 57(7): 4195-4201. doi: 10.7498/aps.57.4195
    [17] 麻健勇, 刘世杰, 魏朝阳, 许 程, 晋云霞, 赵元安, 邵建达, 范正修. 反射型导模共振滤波器设计. 物理学报, 2008, 57(2): 827-832. doi: 10.7498/aps.57.827
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [20] 周传宏, 王磊, 聂娅, 王植恒. 介质光栅导模共振耦合波分析. 物理学报, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
计量
  • 文章访问数:  3841
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-03
  • 修回日期:  2012-08-25
  • 刊出日期:  2013-01-05

带虚设层的抗反射结构导模共振滤波器设计与分析

  • 1. 上海理工大学, 上海市现代光学系统重点实验室, 光电信息与计算机工程学院, 上海 200093;
  • 2. 黔南民族师范学院, 物理与电子科学系, 都匀 558000;
  • 3. 贵州财经大学, 贵州省经济系统仿真重点实验室, 贵阳 550004
    基金项目: 国家自然科学基金(批准号: 60908021, 11264005, 10647005, 11064010)、 贵州省科学技术基金(批准号: 20112097)和贵州省教育厅自然科学项目(2011029)资助的课题.

摘要: 提出带虚设层的抗反射导模共振滤波器结构及设计方法, 该方法适用于任意角度入射带虚设层的抗反射结构导模共振滤波器设计与分析. 得到带虚设层的导模共振滤波器抗反射结构所满足的关系式. 指出在维持虚设层光学厚度不变的情况下, 可以通过不同选材, 在低反射旁带中实现等带宽不同波长的选择. 此外, 由于结构的抗反射特性在低角范围内具有较大的角度容差, 改变入射角, 可以实现滤波波长及光谱带宽在宽光谱范围内的准线性可调谐.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回