搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响

杨剑群 李兴冀 马国亮 刘超铭 邹梦楠

引用本文:
Citation:

170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响

杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠

Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film

Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan
PDF
导出引用
  • 碳纳米管具有优异的导电性, 是未来电子元器件的理想候选材料, 应用前景广阔. 针对碳纳米管在空间电子元器件的应用需求, 本文研究了170 keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 采用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)及电子顺磁共振谱仪(EPR)对辐照前后碳纳米管试样的表面形貌和微观结构进行分析; 利用四探针测试仪对碳纳米管薄膜进行导电性能分析. SEM分析表明, 170 keV质子辐照条件下, 当辐照注量高于51015 p/cm2 (protons/cm2)时, 碳纳米管薄膜表面变得粗糙疏松, 纳米管发生明显弯曲、收缩及相互缠结现象. 目前, 质子辐照纳米管发生的收缩现象被首次发现. 基于Raman和XPS分析表明, 170 keV质子辐照后碳纳米管的有序结构得到改善, 且随辐照注量增加, 碳纳米管的有序结构改善明显. 结构的改善主要是由于170 keV质子辐照碳纳米管所产生的位移效应导致缺陷重组. EPR分析表明, 随着辐照注量的增加, 碳纳米管薄膜内的非局域化电子减少. 利用四探针测试分析表明, 碳纳米管薄膜的导电性能变差, 这是由于170 keV质子辐照导致碳纳米管薄膜中的电子特性及形态发生改变. 本文研究结果有助于利用质子辐照对碳纳米管膜结构和性能进行调整, 从而制备出抗辐射的纳米电子器件.
    Due to their unusual electrical conductivity, carbon nanotubes as the ideal candidates for making future electronic components have extensive application potentiality. In order to meet the requirements in space electronic components for carbon nanotubes, effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes (MWCNTs) film is investigated in this paper. Surface morphologies and microstructure of the carbon nanotube films are examined by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy, respectively. Electrical conductivities of the carbon nanotube films before and after 170 keV proton irradiation are measured using four-point probe technique. SEM analysis reveals that when proton irradiation fluence is greater than 51015 p/cm2, the surface of the carbon nanotube film becomes rough and loose, and obvious bending, shrinkage, and entanglement of nanotubes are observed. Moreover, the shrinkage phenomenon of MWCNTs caused by proton irradiation is found the first time so far as we know. Based on Raman and XPS analyses, it is confirmed that 170 keV protons can improve the ordered structure of the MWCNTs, and irradiation fluence plays a key role in reducing the disorder in the MWCNTs. Improvement of the irradiated MWCNTs by 170 keV protons can be attributed to restructuring of defect sites induced by knock-on atom displacements. On the other hand, carbon impurities on surface of the MWCNT film are reduced due to the effect of sputtering by the 170 keV proton irradiation, which is also helpful to the improvement of the structure of carbon nanotubes. EPR spectra show that the electrons delocalized over carbon nanotubes decrease with increasing irradiation fluence, implying that the carbon nanotube film is not sensitive to ionizing radiation induced by the 170 keV protons, and the electrical conductivities of the MWCNTs films may be decreased. Four-point probe technical analysis shows that with increasing irradiation fluence, electrical properties of the carbon nanotubes film deteriorate, which can be attributed to the changes in electronic properties and morphology of the MWCNT films induced by 170 keV protons. Acquired results could be beneficial to tailoring of structure and properties for the carbon nanotubes film irradiated by protons to develop nanoelectronics of radiation-resistant systems.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Endo M, Strano M S, Ajayan P M 2008 Top Appl. Phys. 111 13

    [3]

    Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦锋, 吴锦雷 2007 物理学报 56 1054]

    [4]

    Basiuk V A, Kobayashi K Kaneko T 2002 Nano Lett. 2 789

    [5]

    Khare B, Meyyappan M, More M H 2003 Nano Lett. 3 643

    [6]

    Li B, Feng Y, Ding K W, Qian G, Zhang X B, Liu Y F 2014 Trans. Nonferrous Met. Soc. China. 24 764

    [7]

    Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M 2013 New Carbon Mater. 28 81 (in Chinese) [Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M, 闫隆 2013 新型炭材料 28 81]

    [8]

    Yang T Z, Lou S Z 2010 Acta Phys. Sin. 59 447 (in Chinese) [杨通在, 罗顺忠 2010 物理学报 59 447]

    [9]

    Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 物理学报 61 036401]

    [10]

    Hong W K, Lee C, Nepal D, Geckeler K E, Shin K, Lee T 2006 Nanotechnology 17 5675

    [11]

    Yan L, Zhou G Y, Ishaq A, He S X, Gong J L, Zhu D Z 2010 Nucl. Sci. Tech. 33 44 (in Chinese) [闫隆, 周广颖, A Ishaq, 何绥霞, 巩金龙, 朱德彰 2010 核技术 33 44]

    [12]

    Ishaq A, Yan L, Zhu D Z 2009 Nucl. Instrum. Methods Phys. Res. B 267 1779

    [13]

    Banhart F 1999 Rep. Prog. Phys. 62 1181

    [14]

    Chopra N G, Ross F M, Zettle A 1996 Chem. Phys. Lett. 256 241

    [15]

    Banhart F, Li J X, Krasheninnikov A V 2005 Phys. Rev. B 71 241408

    [16]

    Ajayan P M, Ravikumar V, Charlier J C 1998 Phys. Rev. Lett. 81 1437

    [17]

    Kiang C H, Goddard W A, Beyers R 1996 J Phys. Chem. B 100 3749

    [18]

    Terrones H, Terrones M, Hernandez E 2000 Phys. Rev. Lett. 84 1716

    [19]

    Bacsa W S, Ugarte D, Chatelain A, Deheer W A 1994 Phys. Rev. B 50 15473

    [20]

    Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 542

    [21]

    Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M 2011 Appl. Surf. Sci. 258 766

    [22]

    Xu T, Yang J H, Liu J W, Fu Q 2007 Appl. Surf. Sci. 253 8945

    [23]

    Beuneu F, l'Huillier C, Salvetat J P, Bonard J M, Forro L 1999 Phys. Rev. B 59 5945

    [24]

    Adhikari A R, Bakhru H, Ajayan P M, Benson R, Chipara M 2007 Nucl. Instrum. Methods Phys. Res. B 265 347

    [25]

    Li X J, Liu C M, Geng H B, Rui E M, Yang D Z, He S Y 2012 IEEE Trans. Nucl. Sci. 59 439

    [26]

    Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z, He S Y 2010 IEEE Trans. Nucl. Sci. 57 831

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Endo M, Strano M S, Ajayan P M 2008 Top Appl. Phys. 111 13

    [3]

    Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦锋, 吴锦雷 2007 物理学报 56 1054]

    [4]

    Basiuk V A, Kobayashi K Kaneko T 2002 Nano Lett. 2 789

    [5]

    Khare B, Meyyappan M, More M H 2003 Nano Lett. 3 643

    [6]

    Li B, Feng Y, Ding K W, Qian G, Zhang X B, Liu Y F 2014 Trans. Nonferrous Met. Soc. China. 24 764

    [7]

    Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M 2013 New Carbon Mater. 28 81 (in Chinese) [Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M, 闫隆 2013 新型炭材料 28 81]

    [8]

    Yang T Z, Lou S Z 2010 Acta Phys. Sin. 59 447 (in Chinese) [杨通在, 罗顺忠 2010 物理学报 59 447]

    [9]

    Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 物理学报 61 036401]

    [10]

    Hong W K, Lee C, Nepal D, Geckeler K E, Shin K, Lee T 2006 Nanotechnology 17 5675

    [11]

    Yan L, Zhou G Y, Ishaq A, He S X, Gong J L, Zhu D Z 2010 Nucl. Sci. Tech. 33 44 (in Chinese) [闫隆, 周广颖, A Ishaq, 何绥霞, 巩金龙, 朱德彰 2010 核技术 33 44]

    [12]

    Ishaq A, Yan L, Zhu D Z 2009 Nucl. Instrum. Methods Phys. Res. B 267 1779

    [13]

    Banhart F 1999 Rep. Prog. Phys. 62 1181

    [14]

    Chopra N G, Ross F M, Zettle A 1996 Chem. Phys. Lett. 256 241

    [15]

    Banhart F, Li J X, Krasheninnikov A V 2005 Phys. Rev. B 71 241408

    [16]

    Ajayan P M, Ravikumar V, Charlier J C 1998 Phys. Rev. Lett. 81 1437

    [17]

    Kiang C H, Goddard W A, Beyers R 1996 J Phys. Chem. B 100 3749

    [18]

    Terrones H, Terrones M, Hernandez E 2000 Phys. Rev. Lett. 84 1716

    [19]

    Bacsa W S, Ugarte D, Chatelain A, Deheer W A 1994 Phys. Rev. B 50 15473

    [20]

    Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 542

    [21]

    Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M 2011 Appl. Surf. Sci. 258 766

    [22]

    Xu T, Yang J H, Liu J W, Fu Q 2007 Appl. Surf. Sci. 253 8945

    [23]

    Beuneu F, l'Huillier C, Salvetat J P, Bonard J M, Forro L 1999 Phys. Rev. B 59 5945

    [24]

    Adhikari A R, Bakhru H, Ajayan P M, Benson R, Chipara M 2007 Nucl. Instrum. Methods Phys. Res. B 265 347

    [25]

    Li X J, Liu C M, Geng H B, Rui E M, Yang D Z, He S Y 2012 IEEE Trans. Nucl. Sci. 59 439

    [26]

    Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z, He S Y 2010 IEEE Trans. Nucl. Sci. 57 831

  • [1] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [2] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [3] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [4] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究. 物理学报, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [5] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [6] 马国亮, 李兴冀, 杨剑群, 刘超铭, 田丰, 侯春风. 电子辐照LDPE/MWCNTs复合材料的熔融与结晶行为. 物理学报, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [7] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [8] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [9] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析. 物理学报, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [10] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [11] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [12] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [13] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [14] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [15] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化. 物理学报, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [16] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [17] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [18] 李瑞珉, 杜 磊, 庄奕琪, 包军林. MOSFET 辐照诱生界面陷阱形成过程的1/f噪声研究. 物理学报, 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [19] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  2960
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-27
  • 修回日期:  2015-02-04
  • 刊出日期:  2015-07-05

170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响

  • 1. 哈尔滨工业大学材料科学与工程学院, 哈尔滨 150001

摘要: 碳纳米管具有优异的导电性, 是未来电子元器件的理想候选材料, 应用前景广阔. 针对碳纳米管在空间电子元器件的应用需求, 本文研究了170 keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 采用扫描电子显微镜(SEM)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)及电子顺磁共振谱仪(EPR)对辐照前后碳纳米管试样的表面形貌和微观结构进行分析; 利用四探针测试仪对碳纳米管薄膜进行导电性能分析. SEM分析表明, 170 keV质子辐照条件下, 当辐照注量高于51015 p/cm2 (protons/cm2)时, 碳纳米管薄膜表面变得粗糙疏松, 纳米管发生明显弯曲、收缩及相互缠结现象. 目前, 质子辐照纳米管发生的收缩现象被首次发现. 基于Raman和XPS分析表明, 170 keV质子辐照后碳纳米管的有序结构得到改善, 且随辐照注量增加, 碳纳米管的有序结构改善明显. 结构的改善主要是由于170 keV质子辐照碳纳米管所产生的位移效应导致缺陷重组. EPR分析表明, 随着辐照注量的增加, 碳纳米管薄膜内的非局域化电子减少. 利用四探针测试分析表明, 碳纳米管薄膜的导电性能变差, 这是由于170 keV质子辐照导致碳纳米管薄膜中的电子特性及形态发生改变. 本文研究结果有助于利用质子辐照对碳纳米管膜结构和性能进行调整, 从而制备出抗辐射的纳米电子器件.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回