搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子辐照对永磁合金微观结构演化的研究

李哲夫 贾彦彦 刘仁多 徐玉海 王光宏 夏晓彬 沈卫祖

引用本文:
Citation:

质子辐照对永磁合金微观结构演化的研究

李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖

Effect of proton irradiation on microstructure evolution of permanent magnet

Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu
PDF
导出引用
  • 钐钴和钕铁硼稀土永磁合金已经广泛应用于粒子加速器的波荡器和其他器件中,作为加速器的重要组成部分,永磁合金在辐照环境中长期服役会出现磁性能损失的现象,这会影响束流的品质.为了探讨产生这个现象的微观机理,采用透射电镜对质子辐照前后的钐钴和钕铁硼稀土永磁合金进行了微观结构演化的表征和分析,统计了由辐照析出的纳米晶体积密度和粒径分布,并讨论了微观结构演化对宏观磁性能损失的影响.结果表明,随着质子辐照损伤程度的增加,永磁合金的微观结构从单晶结构转变为纳米晶多晶结构,且纳米晶和基体的晶体结构相同.钕铁硼的纳米晶体积密度先增大后减小,粒径分布先增大后不变;钐钴的纳米晶体积密度逐渐减小,粒径逐渐增大.在2 dpa的质子辐照损伤程度下,钕铁硼稀土永磁合金比钐钴永磁合金的非晶化趋势更明显.
    Nd2Fe14B rare earth and Sm2Co17 type permanent magnets have been widely used in the third generation of synchronous radiation light source and free electron laser facility in undulators and other components of particle accelerators. In addition, the permanent magnets are used in the radiation treatment system for cancer as a beam line component. Compared with Sm2Co17 type permanent magnet, Nd2Fe14B rare earth permanent magnet has the characteristics of large magnet energy product, rich starting materials and low price. Although its Curie point and coercive force are lower than those of Sm2Co17 type of permanent magnet, Nd2Fe14B rare earth permanent magnet is still widely used. As an important part of the accelerator, the magnetic loss phenomenon appears when permanent magnet is used in long-term irradiation environments, which affects the stability and quality of the beam. Therefore, it is important to investigate the magnet demagnetization induced by photon irradiation. Recently, there have appeared many researches of the phenomena of demagnetization for the permanent magnets under the irradiation of various kinds of particles. By using different research methods and experimental conditions, single particle irradiation is performed and then the effect of irradiation on magnetic loss is investigated by comparing the macro magnetic properties (such as magnetic flux loss rate, saturation magnetization, etc.). However, there are not any available reports on the microstructure investigations of permanent magnets after irradiation. Microstructure affects macroscopic magnetic properties. In order to discuss the microscopic demagnetization mechanism, the transmission electron microscope is used to characterize and analyze the microstructure evolutions of Sm2Co17 type permanent magnet and Nd2Fe14B rare earth permanent magnet before and after proton irradiation. The evolution of the number density of nanocrystal and its size distribution induced by proton irradiation are calculated. Moreover, the effect of microstructure evolution on macroscopic magnetic loss is discussed. The results indicate that the microstructure of permanent magnet transforms from single crystal structure to polycrystalline structure with the increase of the proton irradiation damage level. Nanocrystal and the matrix of permanent magnet have the same crystal structure. With the irradiation damage level increasing, the nanocrystal density of Nd2Fe14B first increases and then decreases, while the particle size distribution first increases and then keeps constant; the number density of nanocrystal of Sm2Co17 type permanent magnet gradually decreases, while particle size gradually increases, and comparing with Sm2Co17 type permanent magnet, the crystal structure of Nd2Fe14B permanent magnet shows an obvious tendency to be amorphous in 2 dpa irradiation damage level.
    [1]

    He Y Z, Zhang J D, Zhou Q G, Qian Z M, Li Y 2010 High Power Laser Part. Beams 22 1627(in Chinese) [何永周, 张继东, 周巧根, 钱珍梅, 黎阳 2010 强激光与粒子束 22 1627]

    [2]

    He Y Z, Zhou Q G 2012 High Power Laser Part. Beams 24 2187(in Chinese) [何永周, 周巧根 2012 强激光与粒子束 24 2187]

    [3]

    Luna H B, Maruyama X K 1989 Nucl. Instrum. Methods Phys. Res.. 285 349

    [4]

    Okuda S, Ohashi K, Kobayashi N 1994 Nucl. Instrum. Methods Phys. Res.. 94 227

    [5]

    Bizen T, Tanaka T, Asano Y, Kim D E, Bak J S, Lee H S, Kitamura H 2001 Nucl. Instrum. Methods Phys. Res.. 467-468 185

    [6]

    Bizen T, Asano Y, Hara T, Marechal X, Seike T, Tanaka T, Lee H S, Kim D E, Chung C W, Kitamura H 2003 a Nucl. Instrum. Methods Phys. Res.. 515 850

    [7]

    Qiu R, Lee H S, Hong S, Li J L, Bizen T 2007 Nucl. Instrum. Methods Phys. Res.. 575 305

    [8]

    Qiu R, Lee H S, Li J L, Koo T Y, Jang T H 2008 Nucl. Instrum. Methods Phys. Res.. 594 111

    [9]

    Alderman J, Job P K, Martin R C, Simmons C M, Owen G D 2002 Nucl. Instrum. Methods Phys. Res.. 481 9

    [10]

    Miyahara N, Honma T, Fujisawa T 2010 Nucl. Instrum. Methods Phys. Res.. 268 57

    [11]

    Gao R S, Zhen L, Shao W Z, Hao X P 2008 J. Appl. Phys. 103 07E136

    [12]

    Gao R S, Zhen L, Li G A, Xu C Y, Shao W Z 2006 J. Magn. Magn. Mater. 302 156

    [13]

    Ito Y, Yasuda K, Ishigami R, Hatori S, Okada O, Ohashi K, Tanaka S 2001 Nucl. Instrum. Methods Phys. Res.. 183 323

    [14]

    Ito Y, Yasuda K, Ishigami R, Sasase M, Hatori S, Ohashi K, Tanaka S, Yamamoto A 2002 Nucl. Instrum. Methods Phys. Res.. 191 530

    [15]

    Ito Y, Yasuda K, Sasase M, Ishigami R, Hatori S, Ohashi K, Tanaka S 2003 Nucl. Instrum. Methods Phys. Res.. 209 362

    [16]

    Ito Y, Yasuda K, Ishigami R, Ohashi K, Tanaka S 2006 Nucl. Instrum. Methods Phys. Res.. 245 176

    [17]

    Qiu R 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邱睿 2007 博士学位论文(北京: 清华大学)]

    [18]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res.. 268 1818

    [19]

    Hashimoto N, Hunn J D, Byun T S, Mansur L K 2003 J. Nucl. Mater. 318 300

    [20]

    Tian J J, Yin H Q, Qu X H 2005 J. Magn. Mater. Dev. 36 12(in Chinese) [田建军, 尹海清, 曲选辉 2005 磁性材料及器件 36 12]

    [21]

    Li L Y, Yi J H, Huang B Y, Peng Y D 2005 Acta Metall. Sin. 41 791(in Chinese) [李丽娅, 易健宏, 黄伯云, 彭远东 2005 金属学报 41 791]

    [22]

    Weber W J 2000 Nucl. Instrum. Methods Phys. Res.. 166 98

    [23]

    Asano Y, Bizen T, Marechal X 2009 J. Synchrotron Rad. 16 317

    [24]

    Gao R S 2006 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [高润生 2006 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [25]

    Kahkonen O-P, Makinen S, Talvitie M, Manninen M 1992 J. Phys. Condens. Matter 4 1007

  • [1]

    He Y Z, Zhang J D, Zhou Q G, Qian Z M, Li Y 2010 High Power Laser Part. Beams 22 1627(in Chinese) [何永周, 张继东, 周巧根, 钱珍梅, 黎阳 2010 强激光与粒子束 22 1627]

    [2]

    He Y Z, Zhou Q G 2012 High Power Laser Part. Beams 24 2187(in Chinese) [何永周, 周巧根 2012 强激光与粒子束 24 2187]

    [3]

    Luna H B, Maruyama X K 1989 Nucl. Instrum. Methods Phys. Res.. 285 349

    [4]

    Okuda S, Ohashi K, Kobayashi N 1994 Nucl. Instrum. Methods Phys. Res.. 94 227

    [5]

    Bizen T, Tanaka T, Asano Y, Kim D E, Bak J S, Lee H S, Kitamura H 2001 Nucl. Instrum. Methods Phys. Res.. 467-468 185

    [6]

    Bizen T, Asano Y, Hara T, Marechal X, Seike T, Tanaka T, Lee H S, Kim D E, Chung C W, Kitamura H 2003 a Nucl. Instrum. Methods Phys. Res.. 515 850

    [7]

    Qiu R, Lee H S, Hong S, Li J L, Bizen T 2007 Nucl. Instrum. Methods Phys. Res.. 575 305

    [8]

    Qiu R, Lee H S, Li J L, Koo T Y, Jang T H 2008 Nucl. Instrum. Methods Phys. Res.. 594 111

    [9]

    Alderman J, Job P K, Martin R C, Simmons C M, Owen G D 2002 Nucl. Instrum. Methods Phys. Res.. 481 9

    [10]

    Miyahara N, Honma T, Fujisawa T 2010 Nucl. Instrum. Methods Phys. Res.. 268 57

    [11]

    Gao R S, Zhen L, Shao W Z, Hao X P 2008 J. Appl. Phys. 103 07E136

    [12]

    Gao R S, Zhen L, Li G A, Xu C Y, Shao W Z 2006 J. Magn. Magn. Mater. 302 156

    [13]

    Ito Y, Yasuda K, Ishigami R, Hatori S, Okada O, Ohashi K, Tanaka S 2001 Nucl. Instrum. Methods Phys. Res.. 183 323

    [14]

    Ito Y, Yasuda K, Ishigami R, Sasase M, Hatori S, Ohashi K, Tanaka S, Yamamoto A 2002 Nucl. Instrum. Methods Phys. Res.. 191 530

    [15]

    Ito Y, Yasuda K, Sasase M, Ishigami R, Hatori S, Ohashi K, Tanaka S 2003 Nucl. Instrum. Methods Phys. Res.. 209 362

    [16]

    Ito Y, Yasuda K, Ishigami R, Ohashi K, Tanaka S 2006 Nucl. Instrum. Methods Phys. Res.. 245 176

    [17]

    Qiu R 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邱睿 2007 博士学位论文(北京: 清华大学)]

    [18]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res.. 268 1818

    [19]

    Hashimoto N, Hunn J D, Byun T S, Mansur L K 2003 J. Nucl. Mater. 318 300

    [20]

    Tian J J, Yin H Q, Qu X H 2005 J. Magn. Mater. Dev. 36 12(in Chinese) [田建军, 尹海清, 曲选辉 2005 磁性材料及器件 36 12]

    [21]

    Li L Y, Yi J H, Huang B Y, Peng Y D 2005 Acta Metall. Sin. 41 791(in Chinese) [李丽娅, 易健宏, 黄伯云, 彭远东 2005 金属学报 41 791]

    [22]

    Weber W J 2000 Nucl. Instrum. Methods Phys. Res.. 166 98

    [23]

    Asano Y, Bizen T, Marechal X 2009 J. Synchrotron Rad. 16 317

    [24]

    Gao R S 2006 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [高润生 2006 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [25]

    Kahkonen O-P, Makinen S, Talvitie M, Manninen M 1992 J. Phys. Condens. Matter 4 1007

  • [1] 白如雪, 郭红霞, 张鸿, 王迪, 张凤祁, 潘霄宇, 马武英, 胡嘉文, 刘益维, 杨业, 吕伟, 王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究. 物理学报, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [2] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [3] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [4] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [5] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究. 物理学报, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [6] 李杰, 高进, 万发荣. 电子束辐照下的注氘铝的结构变化. 物理学报, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [7] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [8] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [9] 关庆丰, 吕鹏, 王孝东, 万明珍, 顾倩倩, 陈波. 质子辐照下Mo/Si多层膜反射镜的微观结构状态. 物理学报, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [10] 唐杰, 杨梨容, 王晓军, 张林, 魏成富, 陈擘威, 梅杨. 高压对大块(PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x合金微观结构和性能的影响. 物理学报, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [11] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [12] 孙光爱, 陈波, 吴二冬, 闫冠云, 黄朝强, 李武会, 吴忠华, 柳义, 王劼. 蠕变镍基单晶高温合金微观结构与界面特征的X射线小角散射研究. 物理学报, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [13] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [14] 胡志华, 连法增, 朱明刚, 李 卫. 烧结Nd-Fe-B磁体的微观结构和冲击韧性研究. 物理学报, 2008, 57(2): 1202-1206. doi: 10.7498/aps.57.1202
    [15] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [16] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [17] 徐锦锋, 代富平, 魏炳波. 急冷条件下Cu-Pb偏晶合金的相分离研究. 物理学报, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [18] 朱才镇, 张培新, 许启明, 刘剑洪, 任祥忠, 张黔玲, 洪伟良, 李琳琳. 分子动力学模拟不同组分下CaO-Al2O3-SiO2系玻璃微观结构的转变. 物理学报, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [19] 成问好, 李卫, 李传健, 潘伟. 烧结Nd-Fe-B磁体的磁性能一致性与其微观结构的关系. 物理学报, 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
    [20] 丁瑞钦, 王浩, W.F.LAU, W.Y.CHEUNG, S.P.WONG, 王宁娟, 于英敏. InP/SiO2纳米复合膜的微观结构和光学性质. 物理学报, 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
计量
  • 文章访问数:  6542
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-13
  • 修回日期:  2017-10-18
  • 刊出日期:  2018-01-05

/

返回文章
返回