搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究

白如雪 郭红霞 张鸿 王迪 张凤祁 潘霄宇 马武英 胡嘉文 刘益维 杨业 吕伟 王忠明

引用本文:
Citation:

增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究

白如雪, 郭红霞, 张鸿, 王迪, 张凤祁, 潘霄宇, 马武英, 胡嘉文, 刘益维, 杨业, 吕伟, 王忠明

High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure

Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming
PDF
HTML
导出引用
  • 针对增强型共栅共源(Cascode)级联结构和耗尽型AlGaN/GaN功率器件, 利用60 MeV能量质子开展辐射效应研究. 获得了经质子辐照后器件电学性能的退化规律, 并与常规耗尽型HEMTs器件辐照后的电学性能进行了比较, 发现增强型Cascode结构器件对质子辐照更加敏感, 分析认为级联硅基MOS管的存在是其对质子辐照敏感的主要原因. 质子辐照使硅基MOS管栅氧化层产生大量净的正电荷, 诱导发生电离损伤效应, 使其出现阈值电压负向漂移及栅泄漏电流增大等现象. 利用等效(60 MeV能量质子, 累积注量1×1012 p/cm2)剂量的${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$射线辐射器件得到电离损伤效应结果, 发现器件的电学性能退化规律与60 MeV能量质子辐照后的退化规律一致. 通过蒙特卡罗模拟得到质子入射在Cascode型器件内诱导产生的电离能损和非电离能损, 模拟结果表明电离能损是导致器件性能退化的主要原因.
    To ascertain the damage mechanism caused by high-energy proton irradiation to AlGaN/GaN power devices of enhanced Cascode structures, we study the radiation effect of enhanced Cascode structure and depletion AlGaN/GaN power devices by using 60 MeV energy protons in this work. In the case of proton injection reaching 1×1012 p/cm2, the experimental results show that the threshold voltage of the Cascode type device is negatively drifted, the transconductance decreases, and the peak leakage current increases. The threshold voltage decreases from 4.2 V to 3.0 V, with a decrement of 1.2 V, and the peak transconductance value decreases from 0.324 S/mm to 0.260 S/mm, with a decrement of about 19.75%. There is no significant change after the conventional depleted AlGaN/GaN device has been irradiated. The Cascode-type AlGaN/GaN power device is more sensitive to proton irradiation than the depletion-type AlGaN/GaN device. The Cascode-type device is sensitive to proton irradiation because of its structure connected to a silicon-based MOS tube. Proton irradiation causes the silicon-based MOS gate oxide layer to generate a large amount of net positive charge, induces an ionization damage effect, and causes threshold voltage to negatively drift and the gate leakage current to increase. The equivalent 60 MeV energy protons and cumulative injection of 1×1012 p/cm2 dose of the $ {}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma } $ radiation device is used to obtain the ionization damage effect. It is found that after being irradiated by the equivalent dose ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$ ray , the device has the threshold voltage decreasing from 4.15 V to 2.15 V, with a negative drift of 2 V; transconductance peak decreases from 0.335 S/mm to 0.300 S/mm, with an approximate decrement of 10.45%. The degradation of the electrical properties of the device after being irradiated by ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$ ray is consistent with the degradation law after being irradiated by high-energy protons. In order to further verify the experimental accuracy and conclusions, the ionization energy loss and non-ionization energy loss induced by radiation in the device are obtained by Monte Carlo simulation. The simulation results show that the ionization energy loss induces silicon-based MOS to generate oxide trap charge and interfacial state trap charge, which is mainly responsible for the performance degradation of AlGaN/GaN HEMT power devices with enhanced Cascode structure.
      通信作者: 郭红霞, guohxnint@126.com
      Corresponding author: Guo Hong-Xia, guohxnint@126.com
    [1]

    Chen Z W, Yue S Z, Peng C, Zhang Z G, Liu C, Wang L, Huang Y M, Huang Y, He Y J, Zhong X L, Lei Z F 2021 IEEE Trans. Nucl. Sci. 64 118

    [2]

    Chen K J, Häberlan O, Lidwo A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron. Dev. 64 779Google Scholar

    [3]

    Karmarkar A P, Jun B, Fleetwood D M, Schrimpf R D, Weller R A, White B D, Brillson L J, Mishra U K 2004 IEEE Trans. Nucl. Sci. 51 3801Google Scholar

    [4]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [5]

    Roy T, Zhang E X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Choi B K, Hmelo A B, Pantelides S T 2001 IEEE Trans. Nucl. Sci. 57 3060

    [6]

    Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 586Google Scholar

    [7]

    Jun B, Subramanian S 2001 IEEE Trans. Electron. Dev. 48 2250

    [8]

    Gu W P, Hao Y, Yang L A 2010 Phys. Status Solidi C 7 1991Google Scholar

    [9]

    Keum D M, Sung H, Kim H 2017 IEEE Trans. Nucl. Sci. 64 258Google Scholar

    [10]

    Wan X, Baker O K, McCurdy M W, Zhang E X, Zafrani M, Wainwright S P, Xu J, Bo H L, Reed R A, Fleedwood D M, Ma T P 2017 IEEE Trans. Nucl. Sci. 64 253Google Scholar

    [11]

    吕玲, 林正兆, 郭红霞, 潘霄宇, 严肖瑶 2021 现代应用物理 12 603

    Lv L, Lin Z Z, Guo H X, Pan X Y, Yan X Y 2021 Modern Appl. Phys. 12 603

    [12]

    Floriduz A, Devine J D 2020 Microelectron. Reliab. 110 113656Google Scholar

    [13]

    Meneghini M, Tajalli A, Moens P, Banerjee A, Stockman A, Tack M, Gerardin S, Bagatin M, Paccagnella A, Zanoni E, Meneghesso G 2017 IEEE Xplore. Res. Appl. 17 753

    [14]

    Keum D M, Cha H, Kim H 2015 IEEE Trans. Nucl. Sci. 62 3362Google Scholar

    [15]

    Aditya K, Silvestri M, Beck M J, Dixit S K, Ronald D, Reed R A, Fleetwood D M, Shen L, Mishra U K 2009 IEEE Trans. Nucl. Sci. 56 3192Google Scholar

    [16]

    Patrick E, Law M E, Lu L, Cuervo C V, Xi Y Y, Ren F, Pearton S J 2013 IEEE Trans. Nucl. Sci. 60 4103Google Scholar

    [17]

    Kim H Y, Lo C F, Liu L, Ren F, Kim J, Pearton J S 2012 Appl. Phys. Lett. 100 1791

    [18]

    伍文俊, 兰雪梅 2020 电子技术应用 1 22

    Wu W J, Lan X M 2020 Appl. Electron. Tech. 1 22

    [19]

    施敏, 李明逵 著 (王明湘, 赵鹤鸣 译) 2021 半导体器件物理与工艺 (第三版) (苏州: 苏州大学出版社) 第170—176页

    Shi M, Li M K (translated by Wang M X, Zhao H M) 2021 Semiconductor Devices Physics and Technology (3rd Ed.) (Suzhou: Soochow University Press) pp170–176 (in Chinese)

    [20]

    唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402

    Tan C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402

    [21]

    Schwank J R, Shaneyfelt M R, Feeltwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [22]

    Rajan S, Xing H, Denbaars S, Jena D 2004 Appl. Phys. Lett. 84 1591Google Scholar

    [23]

    高文钰, 严荣良, 余学峰, 任迪远, 范隆 1992 半导体学报 13 475

    Gao W Y, Yan R L, Yu X F, Ren D Y, Fan L 1992 J. Semiconduct. 13 475

    [24]

    吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃 2012 物理学报 61 057202Google Scholar

    Lv L, Zhang J C, Li L, Ma X H, Cao Y R, Hao Y 2012 Acta Phys. Sin. 61 057202Google Scholar

    [25]

    Smith M D, O’ Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

  • 图 1  增强型Cascode GaN HEMT器件结构图

    Fig. 1.  Structure diagram of enhanced Cascode GaN HEMT device.

    图 2  增强型Cascode结构氮化镓器件开封装图

    Fig. 2.  Internal equivalent circuit diagram of enhanced Cascode structure.

    图 3  质子辐照前后增强型Cascode结构AlGaN/GaN HEMT器件阈值电压及跨导曲线

    Fig. 3.  Threshold voltage and transconductance curve of AlGaN/GaN HEMT devices of enhanced Cascode structure before and after proton irradiation.

    图 4  质子辐照前后增强型Cascode结构AlGaN/GaN HEMT器件栅泄漏电流曲线

    Fig. 4.  Gate leakage current profile of AlGaN/GaN HEMT devices with enhanced Cascode structure before and after proton irradiation.

    图 5  质子辐照前后耗尽型AlGaN/GaN HEMT器件阈值电压及跨导曲线

    Fig. 5.  Threshold voltage and transconductance curve of depleted AlGaN/GaN HEMT devices before and after proton irradiation.

    图 6  质子辐照前后耗尽型AlGaN/GaN HEMT器件栅泄漏电流曲线

    Fig. 6.  Gate leakage current profile of depleted AlGaN/GaN HEMT devices before and after proton irradiation.

    图 7  ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$射线辐照前后增强型Cascode结构AlGaN/GaN HEMT器件阈值电压及跨导曲线

    Fig. 7.  Threshold voltage and transconductance curve of AlGaN/GaN HEMT devices of enhanced Cascode structure before and after ${}_{}{}^{60}\rm{C}\rm{o}~\rm{\gamma }$-ray irradiation.

    图 8  增强型Cascode结构内部等效电路图

    Fig. 8.  Internal equivalent circuit diagram of enhanced Cascode structure.

    图 9  器件切片分析结果示意图 (a)增强型硅基MOS管; (b)耗尽型GaN晶体管

    Fig. 9.  Schematic diagram of device slice analysis results: (a) Reinforced silicon-based MOS transistors; (b) depletion-type GaN transistors.

    图 10  级联硅基MOS管中的电离能损和非电离能损随深度的变化

    Fig. 10.  Ionization and non-ionization loss in cascaded silicon MOS transistors vary with depth.

    图 11  级联耗尽型AlGaN/GaN HEMT中的电离能损和非电离能损随深度的变化

    Fig. 11.  Ionization and non-ionization losses in cascaded depleted AlGaN/GaN HEMT vary with depth.

  • [1]

    Chen Z W, Yue S Z, Peng C, Zhang Z G, Liu C, Wang L, Huang Y M, Huang Y, He Y J, Zhong X L, Lei Z F 2021 IEEE Trans. Nucl. Sci. 64 118

    [2]

    Chen K J, Häberlan O, Lidwo A, Tsai C L, Ueda T, Uemoto Y, Wu Y 2017 IEEE Trans. Electron. Dev. 64 779Google Scholar

    [3]

    Karmarkar A P, Jun B, Fleetwood D M, Schrimpf R D, Weller R A, White B D, Brillson L J, Mishra U K 2004 IEEE Trans. Nucl. Sci. 51 3801Google Scholar

    [4]

    张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红 2018 物理学报 67 076801Google Scholar

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801Google Scholar

    [5]

    Roy T, Zhang E X, Puzyrev Y S, Fleetwood D M, Schrimpf R D, Choi B K, Hmelo A B, Pantelides S T 2001 IEEE Trans. Nucl. Sci. 57 3060

    [6]

    Wu Y F, Kapolnek D, Ibbetson J P, Parikh P, Keller B P, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 586Google Scholar

    [7]

    Jun B, Subramanian S 2001 IEEE Trans. Electron. Dev. 48 2250

    [8]

    Gu W P, Hao Y, Yang L A 2010 Phys. Status Solidi C 7 1991Google Scholar

    [9]

    Keum D M, Sung H, Kim H 2017 IEEE Trans. Nucl. Sci. 64 258Google Scholar

    [10]

    Wan X, Baker O K, McCurdy M W, Zhang E X, Zafrani M, Wainwright S P, Xu J, Bo H L, Reed R A, Fleedwood D M, Ma T P 2017 IEEE Trans. Nucl. Sci. 64 253Google Scholar

    [11]

    吕玲, 林正兆, 郭红霞, 潘霄宇, 严肖瑶 2021 现代应用物理 12 603

    Lv L, Lin Z Z, Guo H X, Pan X Y, Yan X Y 2021 Modern Appl. Phys. 12 603

    [12]

    Floriduz A, Devine J D 2020 Microelectron. Reliab. 110 113656Google Scholar

    [13]

    Meneghini M, Tajalli A, Moens P, Banerjee A, Stockman A, Tack M, Gerardin S, Bagatin M, Paccagnella A, Zanoni E, Meneghesso G 2017 IEEE Xplore. Res. Appl. 17 753

    [14]

    Keum D M, Cha H, Kim H 2015 IEEE Trans. Nucl. Sci. 62 3362Google Scholar

    [15]

    Aditya K, Silvestri M, Beck M J, Dixit S K, Ronald D, Reed R A, Fleetwood D M, Shen L, Mishra U K 2009 IEEE Trans. Nucl. Sci. 56 3192Google Scholar

    [16]

    Patrick E, Law M E, Lu L, Cuervo C V, Xi Y Y, Ren F, Pearton S J 2013 IEEE Trans. Nucl. Sci. 60 4103Google Scholar

    [17]

    Kim H Y, Lo C F, Liu L, Ren F, Kim J, Pearton J S 2012 Appl. Phys. Lett. 100 1791

    [18]

    伍文俊, 兰雪梅 2020 电子技术应用 1 22

    Wu W J, Lan X M 2020 Appl. Electron. Tech. 1 22

    [19]

    施敏, 李明逵 著 (王明湘, 赵鹤鸣 译) 2021 半导体器件物理与工艺 (第三版) (苏州: 苏州大学出版社) 第170—176页

    Shi M, Li M K (translated by Wang M X, Zhao H M) 2021 Semiconductor Devices Physics and Technology (3rd Ed.) (Suzhou: Soochow University Press) pp170–176 (in Chinese)

    [20]

    唐常钦, 王多为, 龚敏, 马瑶, 杨治美 2021 电子与封装 21 080402

    Tan C Q, Wang D W, Gong M, Ma Y, Yang Z M 2021 Electron. Packag. 21 080402

    [21]

    Schwank J R, Shaneyfelt M R, Feeltwood D M 2008 IEEE Trans. Nucl. Sci. 55 1833Google Scholar

    [22]

    Rajan S, Xing H, Denbaars S, Jena D 2004 Appl. Phys. Lett. 84 1591Google Scholar

    [23]

    高文钰, 严荣良, 余学峰, 任迪远, 范隆 1992 半导体学报 13 475

    Gao W Y, Yan R L, Yu X F, Ren D Y, Fan L 1992 J. Semiconduct. 13 475

    [24]

    吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃 2012 物理学报 61 057202Google Scholar

    Lv L, Zhang J C, Li L, Ma X H, Cao Y R, Hao Y 2012 Acta Phys. Sin. 61 057202Google Scholar

    [25]

    Smith M D, O’ Mahony D, Vitobello F, Muschitiello M, Costantino A, Barnes A R, Parbrook P J 2016 Semicond. Sci. Technol. 31 025008Google Scholar

  • [1] 陈燕红, 王昭, 周泽贤, 陶科伟, 金雪剑, 史路林, 王国东, 喻佩, 雷瑜, 吴晓霞, 程锐, 杨杰. 利用质子能损诊断部分电离等离子体靶中的束缚电子密度. 物理学报, 2024, 73(7): 073401. doi: 10.7498/aps.73.20231736
    [2] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应. 物理学报, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [3] 黄兴杰, 邢艳辉, 于国浩, 宋亮, 黄荣, 黄增立, 韩军, 张宝顺, 范亚明. 具有阻挡层的H等离子体处理增强型p-GaN栅AlGaN/GaN HEMT研究. 物理学报, 2022, 71(10): 108501. doi: 10.7498/aps.71.20212192
    [4] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [5] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [6] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬, 沈卫祖. 质子辐照对永磁合金微观结构演化的研究. 物理学报, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [7] 张宁, 张鑫, 杨爱香, 把得东, 冯展祖, 陈益峰, 邵剑雄, 陈熙萌. 质子束辐照单层石墨烯的损伤效应. 物理学报, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [8] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析. 物理学报, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [9] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [10] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析. 物理学报, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [11] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析. 物理学报, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [12] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [13] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [14] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [15] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [16] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [17] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [18] 范鲜红, 李 敏, 尼启良, 刘世界, 王晓光, 陈 波. Mo/Si多层膜在质子辐照下反射率的变化. 物理学报, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [19] 范鲜红, 陈 波, 关庆丰. 质子辐照对纯铝薄膜微观结构的影响. 物理学报, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [20] 魏 强, 刘 海, 何世禹, 郝小鹏, 魏 龙. 质子辐照铝膜反射镜的慢正电子湮没研究. 物理学报, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
计量
  • 文章访问数:  5027
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-12
  • 修回日期:  2022-08-31
  • 上网日期:  2022-12-24
  • 刊出日期:  2023-01-05

/

返回文章
返回