搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属轻元素化合物高硬度多功能材料的设计

包括 马帅领 徐春红 崔田

引用本文:
Citation:

过渡金属轻元素化合物高硬度多功能材料的设计

包括, 马帅领, 徐春红, 崔田

Design of ultra-hard multifunctional transition metal compounds

Bao Kuo, Ma Shuai-Ling, Xu Chun-Hong, Cui Tian
PDF
导出引用
  • 过渡金属在元素周期表中占有特殊位置,它们有较多的价电子、较高的电子密度、丰富的价态,通过在其中引入硼、碳、氮等易形成强共价键的轻元素原子形成化合物,是寻找新型多功能材料的重要手段.随着第一性原理计算理论的发展、电子计算机计算能力的提升、对硬度微观机制的理解的深入以及特定条件下物质对应的结构的预测软件的成熟,使得设计过渡金属化合物高硬度/超硬度新型多功能材料成为可能,目前这方面已经有了大量的工作.本文介绍了以硬度为主要性能的新型过渡金属化合物的设计基础,以及过渡金属轻元素化合物的研究现状,并对存在的问题进行了简述,可为新型高硬度多功能过渡金属化合物的设计及合成提供参考.
    Transition metals have special characteristics, such as a large number of valence electrons, multi valence states, high electron density, etc. Introducing a light element, such as boron, carbon, nitrogen, oxygen, etc. into a transition metal is an important means for searching the new multifunctional hard materials. With the development of ab intio calculation, advance in computer and the more in-depth understanding of the nature of hardness, it is possible to design new multifunctional ultra-hard transitional metal with using the advanced structure searching software, which could now serve as the experimental syntheses of these materials. In the present article, we introduce the design of ultra hard multi functional transition metal materials. We first introduce some basic ideas of hardness and material design, then conduct some studies, afterwards we discuss some difficulties in this kind of research. Hopefully these results in the present study could be helpful for designing and synthesizing the ultra-hard multifunctional materials.
      通信作者: 崔田, cuitian@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51632002,51572108,11634004,51032001,11104103)、教育部长江学者和创新团队发展计划(批准号:IRT_15R23)和国家自然科学基金国家基础科学人才培养基金(批准号:J1103202)资助的课题.
      Corresponding author: Cui Tian, cuitian@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51632002, 51572108, 11634004, 51032001, 11104103), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_15R23), and the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1103202).
    [1]

    Sung C M, Sung M 1996 Mater. Chem. Phys. 43 1

    [2]

    Veprek S 1999 J. Vac. Sci. Technol. A 17 2401

    [3]

    Yoo C S, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Husermann D, Mailhiot C 1999 Phys. Rev. Lett. 83 5527

    [4]

    Li Q, Zheng W T 2016 Chin. Phys. B 25 076103

    [5]

    Liu A Y, Cohen M L 1989 Science 245 841

    [6]

    Li D, Tian F B, Duan D F, Zhao Z L, Liu Y X, Chu B H, Sha X J, Wang L, Liu B B, Cui T 2014 RSC Adv. 4 17364

    [7]

    Xing M J, Li B H, Yua Z T, Chen Q 2016 RSC Adv. 6 32740

    [8]

    Mao W L, Mao H K, Peter J E, Thomas T P, Newville M, Kao C C, Heinz D L, Shu J F, Meng Y, Hemley R J 2003 Science 302 425

    [9]

    Hao J, Liu H Y, Lei W W, Tang X, Lu J, Liu D, Li Y W 2015 J. Phys. Chem. C 119 28614

    [10]

    He J L, Guo L C, Guo X J, Liu R P, Tian Y J, Wang H T, Gao C X 2006 Appl. Phys. Lett. 88 101906

    [11]

    Stavrou E, Lobanov S, Dong H F, Oganov A R, Prakapenka V B, Konôpková Z, Goncharov A F 2016 Chem. Mater. 28 6925

    [12]

    Wei Q, Zhang M G, Yan H Y 2016 Phys. Lett. A 380 3217

    [13]

    Fan Q Y, Chai C C, Wei Q, Yang Y T 2016 Materials 9 427

    [14]

    Houska J, Steidl P, Vlcek J, Martan J 2016 Ceram. Int. 42 4361

    [15]

    Pan Z C, Sun H, Zhang Y, Chen C F 2009 Phys. Rev. Lett. 102 055503

    [16]

    He C Y, Sun L Z, Zhang C X, Peng X G, Zhang K W, Zhong J X 2012 Phys. Chem. Chem. Phys. 14 10967

    [17]

    Huang Q, Yu D L, Zhao Z S, Fu S W, Xiong M, Wang Q Q, Gao Y F, Luo K, He J L, Tian Y J 2012 J. Appl. Phys. 112 053518

    [18]

    Wu J H, Liu C X 2016 Chin. Phys. Lett. 33 036202

    [19]

    Zhang B L 2016 J. Alloys Compd. 663 862

    [20]

    He D W, Zhao Y S, Daemen L, Qian J, Shen T D, Zerda T W 2002 Appl. Phys. Lett. 81 643

    [21]

    Qin Y, Shi L W, Zhang S B, Jin F, Zhang L Y, Xia W S, Duan Y F 2016 J. Alloys Compd. 686 914

    [22]

    Wang S N, Oganov A R, Qian G R, Zhu Q, Dong H F, Dong X, Esfahania M M D 2016 Phys. Chem. Chem. Phys. 18 1859

    [23]

    Kenichi T 2004 Phys. Rev. B 70 012101

    [24]

    Cynn H, Klepeis J E, Yoo C S, Young D A 2002 Phys. Rev. Lett. 88 135701

    [25]

    Levine J B, Tolbert S H, Kaner R B 2009 Adv. Funct. Mater. 19 3519

    [26]

    Gilman J J, Chamberland R W, Kaner R B 2006 Int. J. Refract. Met. Hard Mater. 24 1

    [27]

    Kaner R B, Cilman J J, Tolbert S H 2005 Science 308 1268

    [28]

    Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [29]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [30]

    Desgreniers S, Lagarec K 1999 Phys. Rev. B 59 8467

    [31]

    Dubrovinksy L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B, Johansson B 2001 Nature 410 653

    [32]

    Zhao W J, Xu H B, Wang Y X 2009 Phys. Status Solidi RRL. 3 99

    [33]

    Rogl P, Rudy E 1978 J. Solid State Chem. 24 175

    [34]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 850

    [35]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 27

    [36]

    Kalish D, Clougherty E V, Kreder K 1969 J. Am. Ceram. Soc. 52 30

    [37]

    Bsenko L, Lundstrom T 1974 J. Less-Common Met. 34 273

    [38]

    Munro R G 2000 J. Res. Natl. Inst. Stand. Technol. 105 709

    [39]

    O'Neill H 1934 The Hardness of Metals and Its Measurement (London:Chapman and Hall)

    [40]

    Teter D M 1998 MRS Bull. 23 22

    [41]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [42]

    Smith R L, Sandland G E 1922 Proc. Institut. Mech. Engin. 102 623

    [43]

    Gilman J J 1975 J. Appl. Phys. 46 5110

    [44]

    Teter D M, Hemley R J 1996 Science 271 53

    [45]

    Gao F M 2004 Phys. Rev. B 69 094113

    [46]

    Gao F M 2006 Phys. Rev. B 73 132104

    [47]

    Guo X J, Li L, Liu Z Y, Yu D L, He J L, Liu R P, Xu B, Tian Y J, Wang H T 2008 J. Appl. Phys. 104 023503

    [48]

    Šimůnek A, Vackář J 2006 Phys. Rev. Lett. 96 085501

    [49]

    Dai F Z, Zhou Y C 2016 Sci. Rep. 6 33085

    [50]

    Tao Q, Zheng D F, Zhao X P, Chen Y Li, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [51]

    Liu Q, Peng W M, Peng F 2014 Chin. Phys. Lett. 31 086202

    [52]

    Zhang Y K, Wu L L, Wan B, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y, Mao H K 2016 Phys. Chem. Chem. Phys. 18 2361

    [53]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [54]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227

    [55]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [56]

    Wang Y C, L J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063

    [57]

    Zhang X X, Wang Y C, L J, Zhu C Y, Li Q, Zhang M, Li Q, Ma Y M 2013 J. Chem. Phys. 138 114101

    [58]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [59]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [60]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [61]

    Wang X L, Tian F B, Wang L, Jin X L, Duan D F, Huang X L, Liu B B, Cui T 2013 New J. Phys. 15 013010

    [62]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558

    [63]

    Wei S L, Li D, L Y Z, Liu Z, Xu C H, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Chem. Chem. Phys. 18 18074

    [64]

    Yu H Y, Duan D F, Liu H Y, Yang T, Tian F B, Bao K, Li D, Zhao Z L, Liu B B, Cui T 2016 Sci. Rep. 6 18918

    [65]

    Yu H Y, Duan D F, Tian F B, Liu H Y, Li D, Huang X L, Liu Y X, Liu B B, Cui T 2015 J. Phys. Chem. C 119 25268

    [66]

    Lu X H, Kang L, Zhou L, Chen J, Ji Z M, Cao C H, Jin B B, Xu W W, Wu P H, Wang X S 2008 Chin. Phys. Lett. 25 4076

    [67]

    Zou Y T, Wang X B, Chen T, Li X F, Qi X T, Welch D, Zhu P W, Liu B B, Cui T, Li B S 2015 Sci. Rep. 5 10811

    [68]

    Zhao Z L, Bao K, Li Da, Duan D F, Tian F B, Jin X L, Chen C B, Huang X L, Liu B B, Cui T 2014 Sci. Rep. 4 04797

    [69]

    Zhang Y K, Wu L L, Wan B, Lin Y Z, Hu Q Y, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y 2016 Sci. Rep. 6 33506

    [70]

    Li D, Tian F B, Duan D F, Bao K, Chu B H, Sha X J, Liu B B, Cui T 2014 RSC Adv. 4 10133

    [71]

    Zhao Z L, Bao K, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Rev. B 93 214104

    [72]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [73]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [74]

    Boustani I 1997 Phys. Rev. B 55 16426

    [75]

    Chen Z Q, Peng Y S, Hu M, Li C M, Luo Y T 2016 Ceram. Int. 42 6624

    [76]

    Dudka A P, Khrykina O N, Bolotina N B, Shitsevalova N Y, Filipov V B, Sluchanko N E 2017 J. Alloys Compd. 692 535

    [77]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [78]

    Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W, Kaner R B 2016 Chem. Mater. 28 6605

    [79]

    Troc R, Wawryk R, Pikul A, Shitsevalova N 2015 Philos. Mag. 95 2343

    [80]

    Li X F, Du J Y 2016 RSC Adv. 6 49214

    [81]

    Li P F, Zhou R L, Zeng X C 2015 ACS Appl. Mater. Interfaces 7 15607

    [82]

    Pan Y, Huang H W, Wang X, Lin Y H 2015 Comput. Mater. Sci. 09 1

    [83]

    Zhang X Z, Zhao E J, Wu Z J 2015 J. Alloys Compd. 632 37

    [84]

    Yan Q, Wang Y X, Wang B, Yang J M, Yang G 2015 RSC Adv. 5 25919

    [85]

    Huang B, Duan Y H, Hu W C, Suna Y, Chen S 2015 Ceram. Int. 41 6831

    [86]

    Feng S Q, Guo F, Li J Y, Wang Y Q, Zhang L M, Cheng X 2015 Chem. Phys. Lett. 635 205

    [87]

    Wu L L, Wan B, Zhao Y, Zhang Y K, Liu H Y, Wang Y C, Zhang J W, Gou H Y 2015 J. Phys. Chem. C 119 21649

    [88]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [89]

    Wang Y C, Wu L L, Lin Y Z, Hu Q Y, Li Z P, Liu H Y, Zhang Y K, Gou H Y, Yao Y S, Zhang J W, Gao F M, Mao H K 2015 Phys. Rev. B 92 174106

    [90]

    Li Y W, Hao J, Xu Y 2012 Phys. Lett. A 376 3535

    [91]

    Harikrishnan G, Ajith K M, Chandra S, Valsakumar M C 2015 Modelling Simul. Mater. Sci. Eng. 23 085006

    [92]

    Pan Y, Lin Y H, Guo J M, Wen M 2014 RSC Adv. 4 47377

    [93]

    Bian Y, Liu X, Li A, Wang S, Liang Y 2015 Mater. Res. Innovations 19 178

    [94]

    Cui L, Wang M L, Wang Y X 2014 J. Phys. Soc. Jpn. 83 114707.

    [95]

    Pan Y, Lin Y H 2015 J. Phys. Chem. C 119 23175

    [96]

    Fan J, Bao K, Jin X L, Meng X X, Cui T 2012 J. Mater. Chem. 22 17630

    [97]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [98]

    Aronsson B 1960 Acta Chem. Scand. 14 1414

    [99]

    100 Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B, Cui T 2014 Chin. Phys. B 23 016102

    [100]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [101]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [102]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275

  • [1]

    Sung C M, Sung M 1996 Mater. Chem. Phys. 43 1

    [2]

    Veprek S 1999 J. Vac. Sci. Technol. A 17 2401

    [3]

    Yoo C S, Cynn H, Gygi F, Galli G, Iota V, Nicol M, Carlson S, Husermann D, Mailhiot C 1999 Phys. Rev. Lett. 83 5527

    [4]

    Li Q, Zheng W T 2016 Chin. Phys. B 25 076103

    [5]

    Liu A Y, Cohen M L 1989 Science 245 841

    [6]

    Li D, Tian F B, Duan D F, Zhao Z L, Liu Y X, Chu B H, Sha X J, Wang L, Liu B B, Cui T 2014 RSC Adv. 4 17364

    [7]

    Xing M J, Li B H, Yua Z T, Chen Q 2016 RSC Adv. 6 32740

    [8]

    Mao W L, Mao H K, Peter J E, Thomas T P, Newville M, Kao C C, Heinz D L, Shu J F, Meng Y, Hemley R J 2003 Science 302 425

    [9]

    Hao J, Liu H Y, Lei W W, Tang X, Lu J, Liu D, Li Y W 2015 J. Phys. Chem. C 119 28614

    [10]

    He J L, Guo L C, Guo X J, Liu R P, Tian Y J, Wang H T, Gao C X 2006 Appl. Phys. Lett. 88 101906

    [11]

    Stavrou E, Lobanov S, Dong H F, Oganov A R, Prakapenka V B, Konôpková Z, Goncharov A F 2016 Chem. Mater. 28 6925

    [12]

    Wei Q, Zhang M G, Yan H Y 2016 Phys. Lett. A 380 3217

    [13]

    Fan Q Y, Chai C C, Wei Q, Yang Y T 2016 Materials 9 427

    [14]

    Houska J, Steidl P, Vlcek J, Martan J 2016 Ceram. Int. 42 4361

    [15]

    Pan Z C, Sun H, Zhang Y, Chen C F 2009 Phys. Rev. Lett. 102 055503

    [16]

    He C Y, Sun L Z, Zhang C X, Peng X G, Zhang K W, Zhong J X 2012 Phys. Chem. Chem. Phys. 14 10967

    [17]

    Huang Q, Yu D L, Zhao Z S, Fu S W, Xiong M, Wang Q Q, Gao Y F, Luo K, He J L, Tian Y J 2012 J. Appl. Phys. 112 053518

    [18]

    Wu J H, Liu C X 2016 Chin. Phys. Lett. 33 036202

    [19]

    Zhang B L 2016 J. Alloys Compd. 663 862

    [20]

    He D W, Zhao Y S, Daemen L, Qian J, Shen T D, Zerda T W 2002 Appl. Phys. Lett. 81 643

    [21]

    Qin Y, Shi L W, Zhang S B, Jin F, Zhang L Y, Xia W S, Duan Y F 2016 J. Alloys Compd. 686 914

    [22]

    Wang S N, Oganov A R, Qian G R, Zhu Q, Dong H F, Dong X, Esfahania M M D 2016 Phys. Chem. Chem. Phys. 18 1859

    [23]

    Kenichi T 2004 Phys. Rev. B 70 012101

    [24]

    Cynn H, Klepeis J E, Yoo C S, Young D A 2002 Phys. Rev. Lett. 88 135701

    [25]

    Levine J B, Tolbert S H, Kaner R B 2009 Adv. Funct. Mater. 19 3519

    [26]

    Gilman J J, Chamberland R W, Kaner R B 2006 Int. J. Refract. Met. Hard Mater. 24 1

    [27]

    Kaner R B, Cilman J J, Tolbert S H 2005 Science 308 1268

    [28]

    Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [29]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [30]

    Desgreniers S, Lagarec K 1999 Phys. Rev. B 59 8467

    [31]

    Dubrovinksy L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B, Johansson B 2001 Nature 410 653

    [32]

    Zhao W J, Xu H B, Wang Y X 2009 Phys. Status Solidi RRL. 3 99

    [33]

    Rogl P, Rudy E 1978 J. Solid State Chem. 24 175

    [34]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 850

    [35]

    Rogl P, Nowotny H, Benesovs F 1970 Monatsh. Chem. 101 27

    [36]

    Kalish D, Clougherty E V, Kreder K 1969 J. Am. Ceram. Soc. 52 30

    [37]

    Bsenko L, Lundstrom T 1974 J. Less-Common Met. 34 273

    [38]

    Munro R G 2000 J. Res. Natl. Inst. Stand. Technol. 105 709

    [39]

    O'Neill H 1934 The Hardness of Metals and Its Measurement (London:Chapman and Hall)

    [40]

    Teter D M 1998 MRS Bull. 23 22

    [41]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [42]

    Smith R L, Sandland G E 1922 Proc. Institut. Mech. Engin. 102 623

    [43]

    Gilman J J 1975 J. Appl. Phys. 46 5110

    [44]

    Teter D M, Hemley R J 1996 Science 271 53

    [45]

    Gao F M 2004 Phys. Rev. B 69 094113

    [46]

    Gao F M 2006 Phys. Rev. B 73 132104

    [47]

    Guo X J, Li L, Liu Z Y, Yu D L, He J L, Liu R P, Xu B, Tian Y J, Wang H T 2008 J. Appl. Phys. 104 023503

    [48]

    Šimůnek A, Vackář J 2006 Phys. Rev. Lett. 96 085501

    [49]

    Dai F Z, Zhou Y C 2016 Sci. Rep. 6 33085

    [50]

    Tao Q, Zheng D F, Zhao X P, Chen Y Li, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [51]

    Liu Q, Peng W M, Peng F 2014 Chin. Phys. Lett. 31 086202

    [52]

    Zhang Y K, Wu L L, Wan B, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y, Mao H K 2016 Phys. Chem. Chem. Phys. 18 2361

    [53]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [54]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227

    [55]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [56]

    Wang Y C, L J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063

    [57]

    Zhang X X, Wang Y C, L J, Zhu C Y, Li Q, Zhang M, Li Q, Ma Y M 2013 J. Chem. Phys. 138 114101

    [58]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [59]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [60]

    Kolmogorov A N, Shah S, Margine E R, Kleppe A K, Jephcoat A P 2012 Phys. Rev. Lett. 109 075501

    [61]

    Wang X L, Tian F B, Wang L, Jin X L, Duan D F, Huang X L, Liu B B, Cui T 2013 New J. Phys. 15 013010

    [62]

    Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R 2004 Nat. Mater. 3 558

    [63]

    Wei S L, Li D, L Y Z, Liu Z, Xu C H, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Chem. Chem. Phys. 18 18074

    [64]

    Yu H Y, Duan D F, Liu H Y, Yang T, Tian F B, Bao K, Li D, Zhao Z L, Liu B B, Cui T 2016 Sci. Rep. 6 18918

    [65]

    Yu H Y, Duan D F, Tian F B, Liu H Y, Li D, Huang X L, Liu Y X, Liu B B, Cui T 2015 J. Phys. Chem. C 119 25268

    [66]

    Lu X H, Kang L, Zhou L, Chen J, Ji Z M, Cao C H, Jin B B, Xu W W, Wu P H, Wang X S 2008 Chin. Phys. Lett. 25 4076

    [67]

    Zou Y T, Wang X B, Chen T, Li X F, Qi X T, Welch D, Zhu P W, Liu B B, Cui T, Li B S 2015 Sci. Rep. 5 10811

    [68]

    Zhao Z L, Bao K, Li Da, Duan D F, Tian F B, Jin X L, Chen C B, Huang X L, Liu B B, Cui T 2014 Sci. Rep. 4 04797

    [69]

    Zhang Y K, Wu L L, Wan B, Lin Y Z, Hu Q Y, Zhao Y, Gao R, Li Z P, Zhang J W, Gou H Y 2016 Sci. Rep. 6 33506

    [70]

    Li D, Tian F B, Duan D F, Bao K, Chu B H, Sha X J, Liu B B, Cui T 2014 RSC Adv. 4 10133

    [71]

    Zhao Z L, Bao K, Tian F B, Duan D F, Liu B B, Cui T 2016 Phys. Rev. B 93 214104

    [72]

    Quandt A, Boustani I 2005 Chem. Phys. Chem. 6 2001

    [73]

    Oganov A R, Chen J H, Gatti C, Ma Y Z, Ma Y M, Glass C W, Liu Z X, Yu T, Kurakevych O O, Solozhenko V L 2009 Nature 457 863

    [74]

    Boustani I 1997 Phys. Rev. B 55 16426

    [75]

    Chen Z Q, Peng Y S, Hu M, Li C M, Luo Y T 2016 Ceram. Int. 42 6624

    [76]

    Dudka A P, Khrykina O N, Bolotina N B, Shitsevalova N Y, Filipov V B, Sluchanko N E 2017 J. Alloys Compd. 692 535

    [77]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [78]

    Akopov G, Yeung M T, Sobell Z C, Turner C L, Lin C W, Kaner R B 2016 Chem. Mater. 28 6605

    [79]

    Troc R, Wawryk R, Pikul A, Shitsevalova N 2015 Philos. Mag. 95 2343

    [80]

    Li X F, Du J Y 2016 RSC Adv. 6 49214

    [81]

    Li P F, Zhou R L, Zeng X C 2015 ACS Appl. Mater. Interfaces 7 15607

    [82]

    Pan Y, Huang H W, Wang X, Lin Y H 2015 Comput. Mater. Sci. 09 1

    [83]

    Zhang X Z, Zhao E J, Wu Z J 2015 J. Alloys Compd. 632 37

    [84]

    Yan Q, Wang Y X, Wang B, Yang J M, Yang G 2015 RSC Adv. 5 25919

    [85]

    Huang B, Duan Y H, Hu W C, Suna Y, Chen S 2015 Ceram. Int. 41 6831

    [86]

    Feng S Q, Guo F, Li J Y, Wang Y Q, Zhang L M, Cheng X 2015 Chem. Phys. Lett. 635 205

    [87]

    Wu L L, Wan B, Zhao Y, Zhang Y K, Liu H Y, Wang Y C, Zhang J W, Gou H Y 2015 J. Phys. Chem. C 119 21649

    [88]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [89]

    Wang Y C, Wu L L, Lin Y Z, Hu Q Y, Li Z P, Liu H Y, Zhang Y K, Gou H Y, Yao Y S, Zhang J W, Gao F M, Mao H K 2015 Phys. Rev. B 92 174106

    [90]

    Li Y W, Hao J, Xu Y 2012 Phys. Lett. A 376 3535

    [91]

    Harikrishnan G, Ajith K M, Chandra S, Valsakumar M C 2015 Modelling Simul. Mater. Sci. Eng. 23 085006

    [92]

    Pan Y, Lin Y H, Guo J M, Wen M 2014 RSC Adv. 4 47377

    [93]

    Bian Y, Liu X, Li A, Wang S, Liang Y 2015 Mater. Res. Innovations 19 178

    [94]

    Cui L, Wang M L, Wang Y X 2014 J. Phys. Soc. Jpn. 83 114707.

    [95]

    Pan Y, Lin Y H 2015 J. Phys. Chem. C 119 23175

    [96]

    Fan J, Bao K, Jin X L, Meng X X, Cui T 2012 J. Mater. Chem. 22 17630

    [97]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [98]

    Aronsson B 1960 Acta Chem. Scand. 14 1414

    [99]

    100 Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B, Cui T 2014 Chin. Phys. B 23 016102

    [100]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [101]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [102]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275

  • [1] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, 2019, 68(15): 158101. doi: 10.7498/aps.68.20190350
    [2] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [3] 魏新权, 毕甲紫, 李然. 超高强块体非晶合金的研究进展. 物理学报, 2017, 66(17): 176408. doi: 10.7498/aps.66.176408
    [4] 徐波, 田永君. 纳米孪晶超硬材料的高压合成. 物理学报, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [5] 孙良奎, 于哲峰, 黄洁. 基于超材料的定向传热结构研究与设计. 物理学报, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [6] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [7] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [8] 毕力格, 特古斯, 伊日勒图, 石海荣. 一级相变材料Mn1.2Fe0.8P0.4Si0.6的热磁发电性能. 物理学报, 2012, 61(7): 077103. doi: 10.7498/aps.61.077103
    [9] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [10] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [11] 陈祥磊, 张杰, 杜淮江, 周先意, 叶邦角. 化合物半导体材料的正电子寿命计算. 物理学报, 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [12] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [13] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [14] 刘秀喜, 王公堂. 有机硅化合物-金属氧化物绝缘保护材料在制造高压晶闸管中的应用研究. 物理学报, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [15] 梁拥成, 郭万林, 方 忠. 过渡金属化合物OsB2与OsO2低压缩性的第一性原理计算研究. 物理学报, 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
    [16] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [17] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [18] 张宏伟, 荣传兵, 张绍英, 沈保根. 高性能纳米复合永磁材料的模拟计算研究. 物理学报, 2004, 53(12): 4347-4352. doi: 10.7498/aps.53.4347
    [19] 张家明, 陆卫, 沈学础. 六卤化金属化合物晶体晶格非稳定性量子化学计算. 物理学报, 1995, 44(11): 1798-1804. doi: 10.7498/aps.44.1798
    [20] 朱宰万, 徐济安. 周期系金属元素和A-15化合物超导转变温度的计算. 物理学报, 1978, 27(1): 112-117. doi: 10.7498/aps.27.112
计量
  • 文章访问数:  3316
  • PDF下载量:  1128
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-13
  • 修回日期:  2017-01-19
  • 刊出日期:  2017-02-05

过渡金属轻元素化合物高硬度多功能材料的设计

  • 1. 吉林大学物理学院, 超硬材料国家重点实验室, 长春 130012
  • 通信作者: 崔田, cuitian@jlu.edu.cn
    基金项目: 国家自然科学基金(批准号:51632002,51572108,11634004,51032001,11104103)、教育部长江学者和创新团队发展计划(批准号:IRT_15R23)和国家自然科学基金国家基础科学人才培养基金(批准号:J1103202)资助的课题.

摘要: 过渡金属在元素周期表中占有特殊位置,它们有较多的价电子、较高的电子密度、丰富的价态,通过在其中引入硼、碳、氮等易形成强共价键的轻元素原子形成化合物,是寻找新型多功能材料的重要手段.随着第一性原理计算理论的发展、电子计算机计算能力的提升、对硬度微观机制的理解的深入以及特定条件下物质对应的结构的预测软件的成熟,使得设计过渡金属化合物高硬度/超硬度新型多功能材料成为可能,目前这方面已经有了大量的工作.本文介绍了以硬度为主要性能的新型过渡金属化合物的设计基础,以及过渡金属轻元素化合物的研究现状,并对存在的问题进行了简述,可为新型高硬度多功能过渡金属化合物的设计及合成提供参考.

English Abstract

参考文献 (102)

目录

    /

    返回文章
    返回