搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制

张永 单智发 蔡建九 吴洪清 李俊承 陈凯轩 林志伟 王向武

引用本文:
Citation:

空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制

张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武

Investigation of inverted metamorphic GaInP/GaAs/In0.3Ga0.7As (1 eV) triple junction solar cells for space applications

Zhang Yong, Shan Zhi-Fa, Cai Jian-Jiu, Wu Hong-Qing, Li Jun-Cheng, Chen Kai-Xuan, Lin Zhi-Wei, Wang Xiang-Wu
PDF
导出引用
  • 采用阶变缓冲层技术 (step-graded) 外延生长了具有更优带隙组合的倒装GaInP/GaAs/In0.3Ga0.7As(1.0 eV) 三结太阳电池材料, TEM和HRXRD测试表明晶格失配度为2%的In0.3Ga0.7As 底电池具有较低的穿透位错密度和较高的晶体质量, 达到太阳电池的制备要求. 通过键合、剥离等工艺制备了太阳电池芯片. 面积为 10.922 cm2 的太阳电池芯片在空间光谱条件下转换效率达到32.64% (AM0, 25 ℃), 比传统晶格匹配的 GaInP/GaAs/Ge(0.67 eV) 三结太阳电池的转换效率提高3个百分点.
    High efficiency inverted metamorphic (IMM) GaInP/GaAs/In0.3Ga0.7As(1.0 eV) triple-junction solar cells have been fabricated by growing In0.3Ga0.7As(1.0 eV) sub-cell using step-graded buffer layer, which is 2% lattice mismatch to the GaAs middle cell. The high crystalline quality and low threading dislocation density are confirmed by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). The quantum efficiency and I-V characteristic are measured for the IMM GaInP/GaAs/In0.3Ga0.7As solar cells, as well as for the conventional triple-junction solar cell based on Ge substrate (GaInP/GaAs/Ge). The efficiency of the designed cell with an area of 10.922 cm2 is 32.64% (AM0, 25 ℃), which is 3% higher than the conventional GaInP/GaAs/Ge triple junction solar cell.
    • 基金项目: 国家高技术研究发展计划 (批准号: 2011AA050512) 资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA050512).
    [1]

    Meusel M, Bensch W, Bergunde T, Kern R, Khorenko V, Köstler W, LaRoche G, Torunski T, Zimmermann W, Strobl G 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milan, Italy, September 3-7 2007 p16

    [2]

    Chen M B, Cui R Q, Wang L X, Zhang Z W, Lu J F, Chi W Y 2004 Acta Phys. Sin. 53 3632 (in Chinese) [陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英 2004 物理学报 53 3632]

    [3]

    Stan M, Aiken D, Cho B, Cornfeld A, Diaz J, Ley V, Korostyshevsky A, Patel P, Sharps P, Varghese T 2008 J. Cryst. Growth 310 5204

    [4]

    King R R, Fetzer C M, Law D C, Edmondson K M, Yoon H, Kinsey G S, Krut D D, Ermer J H, Hebert P, Cavicchi B T 2006 Photovoltaic Energy Conversion Conference Record of the 2006 IEEE 4th World Conference: IEEE Waikoloa, USA, May 7-12, 2006 p1757

    [5]

    Shan W, Walukiewicz W, Ager I J, Haller E, Geisz J, Friedman D, Olson J, Kurtz S R 1999 Phys. Rev. Lett. 82 1221

    [6]

    Ptak A, Kurtz S, Johnston S, Friedman D, Geisz J, Olson J, McMahon W, Kibbler A, Kramer C, Young M 2003 National Center for Photovoltaics and Solar Program Review Meeting Denver, USA, March 24-26, 2003 p24

    [7]

    Geisz J, Kurtz S, Wanlass M, Ward J, Duda A, Friedman D, Olson J, McMahon W, Moriarty T, Kiehl J 2007 Appl. Phys. Lett. 91 023502

    [8]

    Cornfeld A B, Stan M, Varghese T, Diaz J, Ley A V, Cho B, Korostyshevsky A, Aiken D J, Sharps PR 2008 Photovoltaic Specialists Conference (PVSC), 33rd IEEE San Diego, USA, May 11-16, 2008 p1

    [9]

    Zhang Y Q, Cai J J, Zhang S X, Zhang Y, Lin Z Y, Wang X w, Chen K J 2012 Research & Progress of SSE 30 469 (in Chinese) [张银桥, 蔡建九, 张双翔, 张永, 林志园, 王向武, 陈开建 2010 固体电子学研究与进展 30 469]

    [10]

    Chang K H, Gilbala R, Srolovitz D J, Bhattacharya P K, Mansfield J F 1990 J. Appl. Phys. 67 4093

    [11]

    Yoon H, Haddad M, Mesropian S, Yen J, Edmondson K, Law D, King R R, Bhusari D, Boca A, Karam N H 2008 Photovoltaic Specialists Conference(PVSC), 33rd IEEE San Diego, USA, May 11-16, 2008 p1

    [12]

    King R R, Sherif R A, Kinsey G S, Kurtz S, Fetzer C, Edmondson K, Law D, Cotal H, Krut D, Ermer J, Karam N H 2005 International Conference on solar concentrators for the Generationof Electricity or Hydrogen Arizona, USA, May 1-5, 2005 p30

  • [1]

    Meusel M, Bensch W, Bergunde T, Kern R, Khorenko V, Köstler W, LaRoche G, Torunski T, Zimmermann W, Strobl G 2007 Proceedings of the 22nd European Photovoltaic Solar Energy Conference Milan, Italy, September 3-7 2007 p16

    [2]

    Chen M B, Cui R Q, Wang L X, Zhang Z W, Lu J F, Chi W Y 2004 Acta Phys. Sin. 53 3632 (in Chinese) [陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英 2004 物理学报 53 3632]

    [3]

    Stan M, Aiken D, Cho B, Cornfeld A, Diaz J, Ley V, Korostyshevsky A, Patel P, Sharps P, Varghese T 2008 J. Cryst. Growth 310 5204

    [4]

    King R R, Fetzer C M, Law D C, Edmondson K M, Yoon H, Kinsey G S, Krut D D, Ermer J H, Hebert P, Cavicchi B T 2006 Photovoltaic Energy Conversion Conference Record of the 2006 IEEE 4th World Conference: IEEE Waikoloa, USA, May 7-12, 2006 p1757

    [5]

    Shan W, Walukiewicz W, Ager I J, Haller E, Geisz J, Friedman D, Olson J, Kurtz S R 1999 Phys. Rev. Lett. 82 1221

    [6]

    Ptak A, Kurtz S, Johnston S, Friedman D, Geisz J, Olson J, McMahon W, Kibbler A, Kramer C, Young M 2003 National Center for Photovoltaics and Solar Program Review Meeting Denver, USA, March 24-26, 2003 p24

    [7]

    Geisz J, Kurtz S, Wanlass M, Ward J, Duda A, Friedman D, Olson J, McMahon W, Moriarty T, Kiehl J 2007 Appl. Phys. Lett. 91 023502

    [8]

    Cornfeld A B, Stan M, Varghese T, Diaz J, Ley A V, Cho B, Korostyshevsky A, Aiken D J, Sharps PR 2008 Photovoltaic Specialists Conference (PVSC), 33rd IEEE San Diego, USA, May 11-16, 2008 p1

    [9]

    Zhang Y Q, Cai J J, Zhang S X, Zhang Y, Lin Z Y, Wang X w, Chen K J 2012 Research & Progress of SSE 30 469 (in Chinese) [张银桥, 蔡建九, 张双翔, 张永, 林志园, 王向武, 陈开建 2010 固体电子学研究与进展 30 469]

    [10]

    Chang K H, Gilbala R, Srolovitz D J, Bhattacharya P K, Mansfield J F 1990 J. Appl. Phys. 67 4093

    [11]

    Yoon H, Haddad M, Mesropian S, Yen J, Edmondson K, Law D, King R R, Bhusari D, Boca A, Karam N H 2008 Photovoltaic Specialists Conference(PVSC), 33rd IEEE San Diego, USA, May 11-16, 2008 p1

    [12]

    King R R, Sherif R A, Kinsey G S, Kurtz S, Fetzer C, Edmondson K, Law D, Cotal H, Krut D, Ermer J, Karam N H 2005 International Conference on solar concentrators for the Generationof Electricity or Hydrogen Arizona, USA, May 1-5, 2005 p30

计量
  • 文章访问数:  1927
  • PDF下载量:  975
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-29
  • 修回日期:  2013-04-02
  • 刊出日期:  2013-08-05

空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制

  • 1. 厦门乾照光电股份有限公司, 厦门 361101
    基金项目: 

    国家高技术研究发展计划 (批准号: 2011AA050512) 资助的课题.

摘要: 采用阶变缓冲层技术 (step-graded) 外延生长了具有更优带隙组合的倒装GaInP/GaAs/In0.3Ga0.7As(1.0 eV) 三结太阳电池材料, TEM和HRXRD测试表明晶格失配度为2%的In0.3Ga0.7As 底电池具有较低的穿透位错密度和较高的晶体质量, 达到太阳电池的制备要求. 通过键合、剥离等工艺制备了太阳电池芯片. 面积为 10.922 cm2 的太阳电池芯片在空间光谱条件下转换效率达到32.64% (AM0, 25 ℃), 比传统晶格匹配的 GaInP/GaAs/Ge(0.67 eV) 三结太阳电池的转换效率提高3个百分点.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回