搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀释制冷机及其中的热交换问题

付柏山 廖奕 周俊

引用本文:
Citation:

稀释制冷机及其中的热交换问题

付柏山, 廖奕, 周俊

Dilution refrigerator and its heat transfer problems

Fu Bai-Shan, Liao Yi, Zhou Jun
PDF
HTML
导出引用
  • 在低温物理和量子信息科学等学科的研究中, 持续保持稳定的mK级低温是至关重要的. 稀释制冷机是用来获得极低温的制冷装置, 它利用了超流态4He与其同位素3He的混合溶液在超低温下的相分离效应. 热交换器的性能是决定连续循环工作制冷机性能的关键因素. 在极低温下, 氦与金属之间存在巨大的界面热阻(即卡皮查热阻), 利用多孔的烧结金属颗粒来提高接触面积, 可以有效地解决热交换问题. 因此, 研究极低温下金属颗粒与液氦之间的热交换, 并以此为指导研制高性能的银粉烧结换热器具有重要的应用价值.
    In the research of cryogenic physics and quantum information science, it is essential to maintain a steady low temperature of millikelvin regime continuously. Dilution refrigerator is a widely used refrigeration device to achieve extremely low temperature. It utilizes the phase separation effect of superfluid 4He and its isotope 3He mixed solution at ultra-low temperatures. The performance of heat exchanger is the key factor to determine the performance of continuous cycle refrigerating machine. At extremely low temperatures, there appears a huge interfacial thermal resistance between helium and metal (Kapitza resistance), and the problem of heat exchange can be effectively solved by using the porous sintered metal particles to increase the contact area. Therefore, it is of significance to study the heat exchange between metal particles and liquid helium at extremely low temperature and to develop the relevant high-performance sintered Ag powder heat exchanger.
      通信作者: 周俊, zhoujunzhou@njnu.edu.cn
    • 基金项目: 国家自然科学基金重大项目(批准号: 11890703)资助的课题.
      Corresponding author: Zhou Jun, zhoujunzhou@njnu.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11890703).
    [1]

    London H 1951 Proc. Int. Conf. on Low Temperature Physics Oxford, UK, August 22–28, 1951 p157

    [2]

    Cao H 2021 J. Low Temp. Phys. 204 175Google Scholar

    [3]

    阎守胜 1975 物理 2 111

    Yan S S 1975 Physics 2 111

    [4]

    Wheatley J C 1968 Am. J. Phys. 36 181Google Scholar

    [5]

    郑茂文, 卫铃佼, 全加, 林鹏, 梁惊涛, 赵密广 2020 低温物理学报 4 211

    Zheng M W, Wei L J, Quan J, Lin P, Liang J T, Zhao M G 2020 Low Temp. Phys. Lett. 4 211

    [6]

    Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [7]

    Deng S, Xiao C, Yuan J, Ma D, Li J, Yang N, He H 2019 Appl. Phys. Lett. 115 101603Google Scholar

    [8]

    Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [9]

    Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Materiomics 6 248Google Scholar

    [10]

    Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [11]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [13]

    Frossati G, Godfrin H, Hebral B, Schumacher G, Thoulouze D 1978 Proceedings of the Ultralow Temperatures Symposium (Tokyo: Physical Society of Japan)

    [14]

    曹烈兆, 阎守胜, 陈兆甲 1999 低温物理学 (合肥: 中国科学技大学出版社) 第89页

    Cao L Z, Yan S S, Chen Z J 1999 Cryogenics (Hefei: Press of University of Science and Technology of China) p89 (in Chinese)

    [15]

    Nakayama T 1989 Prog. Low Temp. Phys. 12 115

    [16]

    Nishiguchi N, Nakayama T 1983 Solid State Commun. 45 877Google Scholar

    [17]

    Osheroff D D, Richard R C 1983 Phys. Rev. Lett. 54 1178

    [18]

    Hu Y, Stecher G J, Gramila T J, Richard R C 1996 Phys. Rev. B 54 R9639Google Scholar

  • 图 1  3He-4He溶液相图, X3He的浓度

    Fig. 1.  Phase diagram of 3He-4He solution, where X is the concentration of 3He.

    图 2  稀释制冷机原理图, 箭头方向表示3He流动方向

    Fig. 2.  Schematic diagram of dilution refrigerator (direction of arrows represent the flow direction of 3He).

    图 3  超低温稀释制冷机系统及其关键换热部件: 连续换热器和银粉烧结换热器(图片由南方科技大学量子科学与工程研究院提供)

    Fig. 3.  Ultra-low temperature dilution refrigerator system and its key components: Continuous heat exchanger and sintered Ag powder heat exchanger. (Image courtesy of Institute for Quantum Science and Engineering, Southern University of Science and Technology).

    图 4  金属纳米颗粒与3He液体之间的界面热阻. 圆点为实验值, 虚线为单金属颗粒计算值, 实线为考虑烧结颗粒中软声子模式后的计算值, 摘自文献[16]

    Fig. 4.  Interfacial thermal resistance between metal nanoparticles and liquid 3He. The dot is the experimental value, the dashed line is the calculated value of single metal particles, and the solid line is the calculated value after considering the soft phonon mode in the sintered particles, which is extracted from the Ref. [16].

  • [1]

    London H 1951 Proc. Int. Conf. on Low Temperature Physics Oxford, UK, August 22–28, 1951 p157

    [2]

    Cao H 2021 J. Low Temp. Phys. 204 175Google Scholar

    [3]

    阎守胜 1975 物理 2 111

    Yan S S 1975 Physics 2 111

    [4]

    Wheatley J C 1968 Am. J. Phys. 36 181Google Scholar

    [5]

    郑茂文, 卫铃佼, 全加, 林鹏, 梁惊涛, 赵密广 2020 低温物理学报 4 211

    Zheng M W, Wei L J, Quan J, Lin P, Liang J T, Zhao M G 2020 Low Temp. Phys. Lett. 4 211

    [6]

    Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [7]

    Deng S, Xiao C, Yuan J, Ma D, Li J, Yang N, He H 2019 Appl. Phys. Lett. 115 101603Google Scholar

    [8]

    Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53Google Scholar

    [9]

    Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Materiomics 6 248Google Scholar

    [10]

    Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [11]

    Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617Google Scholar

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605Google Scholar

    [13]

    Frossati G, Godfrin H, Hebral B, Schumacher G, Thoulouze D 1978 Proceedings of the Ultralow Temperatures Symposium (Tokyo: Physical Society of Japan)

    [14]

    曹烈兆, 阎守胜, 陈兆甲 1999 低温物理学 (合肥: 中国科学技大学出版社) 第89页

    Cao L Z, Yan S S, Chen Z J 1999 Cryogenics (Hefei: Press of University of Science and Technology of China) p89 (in Chinese)

    [15]

    Nakayama T 1989 Prog. Low Temp. Phys. 12 115

    [16]

    Nishiguchi N, Nakayama T 1983 Solid State Commun. 45 877Google Scholar

    [17]

    Osheroff D D, Richard R C 1983 Phys. Rev. Lett. 54 1178

    [18]

    Hu Y, Stecher G J, Gramila T J, Richard R C 1996 Phys. Rev. B 54 R9639Google Scholar

  • [1] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241211
    [2] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究. 物理学报, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [3] 刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏. 4 K大冷量GM型脉冲管制冷机. 物理学报, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [4] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究. 物理学报, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [5] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应. 物理学报, 2023, 72(4): 044401. doi: 10.7498/aps.72.20222085
    [6] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导. 物理学报, 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [7] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机. 物理学报, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [8] 何济洲, 徐帅. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211077
    [9] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [10] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [11] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [12] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [13] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [14] 李满, 戴志高, 应见见, 肖湘衡, 岳亚楠. 基于稳态电热拉曼技术的碳纳米管纤维导热系数测量及传热研究. 物理学报, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [15] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响. 物理学报, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [16] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究. 物理学报, 2013, 62(2): 026101. doi: 10.7498/aps.62.026101
    [17] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [18] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响. 物理学报, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [19] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [20] 柳雄斌, 过增元. 换热器性能分析新方法. 物理学报, 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
计量
  • 文章访问数:  9664
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-21
  • 修回日期:  2021-10-09
  • 刊出日期:  2021-12-05

/

返回文章
返回