搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
引用本文:
Citation:

稀释制冷技术

郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛

Dilution Refrigeration Technology

Zheng Mao-wen, Guo Hao-wen, Wei Ling-jiao, Pan Zi-jie, Li Rui-xin, Zhao Miguang, Liang Jing-tao,
PDF
导出引用
  • 稀释制冷机作为一种可以获取 10mK 以下极低温度的制冷技术,广泛应用于量子计算、凝聚态物理等领域,已经成为极低温区的主流技术.目前国际上干式稀释制冷机的研究和应用已经较为成熟,但是对其他类型的稀释制冷机研究较少,研究工作还不够全面系统.本综述围绕稀释制冷技术的研究现状,系统性介绍了其根本机理和制冷原理,梳理了稀释制冷机的多种实现形式,讨论了各种形式的优缺点和研究进展.基于地面应用的典型稀释制冷机,结合实际情况,系统性总结并分析了影响其制冷性能的内在、外在影响因素,为稀释制冷技术研究提供技术参考.
    As the main means of obtaining extremely low temperatures of 10mK, dilution refrigerators are widely used in quantum computing, condensed matter physics and other fields. The development of the most widely used typical dry dilution refrigerators has been relatively mature internationally, while there is little research on other types of dilution refrigerators, and there is a lack of comprehensive and systematic research on dilution refrigeration technology.
    This paper focuses on the current status of dilution refrigeration technology research, introduces its basic principles, and points out that the fundamental reason for continuous refrigeration is the limited solubility of 3He in 4He and the enthalpy difference between the concentrated phase and the dilute phase. The implementation forms and research progress of typical dilution refrigerators, 4He cycle dilution refrigerators, cold cycle dilution refrigerators and space dilution refrigerators are summarized, and their respective application occasions and advantages and disadvantages are discussed. The key influencing factors and design calculation methods for realizing dilution refrigerators below 10mK are analyzed from the aspects of Kapitza thermal resistance, osmotic pressure, and resistance, providing a reference for the research of dilution refrigeration technology.
  • [1]

    Zheng M W, Wei L J, Quan J, Lin P, Liang J T, Zhao M G. 2020 Low Temperature Physics 41 0211(in Chinese) [郑茂文,卫铃佼,全加,林鹏,梁惊涛,赵密广 2020 低温物理学报 41]

    [2]

    Uhlig K 2015 Cryogenics 66 6

    [3]

    Scholz P. A., Kraft-Bermuth S, Andrianov V 2016 J Low Temp Phys. 184 576

    [4]

    Zheng M W, Quan J, Wang N L, Li C Z, Zhao M G, Wei L J, Liang J T. 2019 Journal of Low Temperature Physics 19 1

    [5]

    H. London 1951 Proceeding of International Conference on Low Temperature Physics, Oxford p157

    [6]

    P. Das, R. De Bruyn Ouboter, K. W. Taconis 1965 9th International Conference on Low Temperature Physics, Olenum Press, London p1253

    [7]

    Zheng M W, Li J G, Guo H W, Wei L J, Pan Z J, Li Rui X, Chen H L, Liang J T 2024 Cryogenics 138 103802

    [8]

    O. V. Lounasmaa. 1979 J. Phys. E: Sci. Instrum 12 pp668-675.

    [9]

    Zhao Z Y, Wang C 2020 Cryogenic Engineering and Technologies (New York: CRC Press) p317

    [10]

    Guglielmo V, Lara R 2008 The art of cryogenics(British:British Library) p143

    [11]

    O. V. Lounasmaa 1974 Experimental Principles and Methods Below 1K(New York: Academic Press INC)

    [12]

    D. O. Edwards, M. S. Pettersen 1992 Journal of Low Temperature Physic 87 3/4

    [13]

    Wilks 1967 The Properties of Liquid and Solid Helium (Oxford: Clarendon Press)

    [14]

    G. K.Graf, D. M. Fairbank 1952 Phys. Rev. Letter 103 262

    [15]

    D. O. Edwards, D. F. Brewer, P. Seligmann, M. Skertic, M. Yaqub 1965 Phys. Rev. Lett.15 773

    [16]

    D. O. Edwards, J. G. Daunt 1961 Phys. Rev. 124 640

    [17]

    J. M. J. van Leeuwen, E. G. D. Cohen 1961 Physica 27 1157

    [18]

    Masaki N, Yoshiko F, Toshinobu S 1987 Japanese Journal of Applied Physics 26 69

    [19]

    White G. K. 1968 Experimental Techniques in Low Temperature Physics (Oxford: Clarendon Press)

    [20]

    John C. Wheatley, R. E. Rapp, R. T. Johnson 1971 Journal of Low Temperature Physics 4 1

    [21]

    W.R.Abel, J.C.Wheatley 1968 Physical Review Letters 21 1231

    [22]

    Wheatley J.C., Vilches O.E., Abel W.R. 1968 Phys. 4 1

    [23]

    Wheatley J.C., Rapp, R.E., Johnson, R.T. 1971 J. Low. Temp. Phys. 4 1

    [24]

    A.C.Mota, R.P.Platzeck, R.E.Rapp, J.C.Wheatley 1969 Physical Review 177 266

    [25]

    Radebaugh R., Siegwarth J.D. 1971a Phys. Rev. Lett. 27 796

    [26]

    Radebaugh R., Siegwarth J.D. 1971b Cryogenics 11 368

    [27]

    R.E.Peterson, A.C.Anderson 1973 J Low Tem Phys. 11 639

    [28]

    J.G.M.Kuerten, C.A.M. Castelijns, A.T.A.M. de Waele, H.M. Gijsman 1985 Cryogenics 25 419

    [29]

    V. P. Peshkov 1970 Cryogenics 10 3

    [30]

    Yu. M. Bunkov, A. M. Gu6nault, D. J. Hayward, D. A. Jackson, C. J. Kennedy, T. R. Nichols, I. E. Miller, G. R. Pickett, M. G. Ward 1991 Journal of Low Temperature Physics 83 257

    [31]

    G.A. Vermeulen, G. Frossati 1987 Cryogenics 27 139

    [32]

    Ran Q Z, Qian Y J, Zhu Y J 1979 Low Temperature Physics 1 18 (in Chinese) [冉启泽,钱永嘉,朱元贞 1979 低温物理]

    [33]

    K. Uhlig, W. Hehn 1993 Cryogenics 33 1028

    [34]

    K. Uhlig, W. Hehn 1994 Cryogenics 3 587

    [35]

    K.Uhlig, W.Hehn 1997 Cryogenics 37 279

    [36]

    Y.Koike, Y.Morii, T.Igarashi, et al. 1999 Cryogenics 39 579

    [37]

    K.Uhlig 2004 Cryogenics 44 53

    [38]

    K.Uhlig 2008 Cryogenics 48 138

    [39]

    T SAKON, H NOJIRI1, K KOYAMA 2003 J. Phys Soc. Jpan 72 140

    [40]

    R. Herrmann, A.V. Ofitserov, I. N. Khlyustikov 2005 Instruments and Experimental Techniques 48 5

    [41]

    V. Shvarts, Z. Zhao, L. Bobb, M Jirmanus 2009 Journal of Physics: Conference Series 150 1

    [42]

    K Uhlig 2009 International Cryocooler Conference 15, Long Beach, California, June9-12, 15 497

    [43]

    T. Umeno,K. Maehata, K. Ishibashi 2010 Cryogenics 50 314

    [44]

    V Singh, S Mathimalar, N Dokania, et al. 2013 Pramana – J. Phys.81 719

    [45]

    T. Hata, T. Matsumoto, K. Obara 2014 J Low Temp Phys. 175 471

    [46]

    Mikheev V A, Maidanov V A, Mikhin N P 1984 Cryogenics 24 190

    [47]

    Mohandas P, Cowan B P, Saunders J 1994 Physica B 194 55

    [48]

    Prouvé T, Luchier N, Duband L 2008 Cryocoolers 15 California, US, June 9–12, 2008 p497

    [49]

    Teleberg G, Chase S T, Piccirillo L 2006 Proceedings of SPIE p6275OD-1

    [50]

    Sivokon V E, Dotsenko V V, Pogorelov L A, Sobolev V I 1992 Cryogenics 32 207

    [51]

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin.72 080701 (in Chinese) [俎红叶,程维军,王亚南,王晓涛,李柯,戴巍 2023 物理学报 72 080701]

    [52]

    N. H. Pennings, R. de Bruyn Ouboter, K.W. Taconis 1976 Physica 84B 249

    [53]

    N. H. Pennings, K.W. Taconis, R. de Bruyn Ouboter 1976 Physica 81B 101

    [54]

    N. H. Pennings, K.W. Taconis, R. de Bruyn Ouboter 1976 Physica 84B 102

    [55]

    N Satoh, T Satoh, T Ohtsuka, N Fukuzawa, N Satoh 1987 Journal of Low Temperature Physics 67 195

    [56]

    L. Duband,L. Hui,A. Lange1990 Cryogenics 30 3 263

    [57]

    Roach Pat R, Helvensteijn Ben P.M 1999 Cryogenics 39 1015

    [58]

    Benoit A, Pujol S 1994 Cryogenics 34 421

    [59]

    Sirbi A. et al. 1999 Cryogenics 39 665

    [60]

    Sentis L, Delmas J, Camus P, et al.2005 Cryocoolers 13. New York, US, 2005pp533-542

    [61]

    Triqueneaux S, Sentis L, Camus P, Benoit A, Guyot G 2006 Cryogenics 46 288

    [62]

    Martin F, Vermeulen G, Camus P, Benoit A 2010 Cryogenics 50 623

    [63]

    Pat R. Roach, Ben P. M. Helvensteijn 1999 10th International Cryocooler Conference, MONTEREY, CA, May 26-28, 1999pp647-653

    [64]

    Chaudhry G. Vermeulen G 2012 J Low Temp Phys 169 90

    [65]

    Chaudhry G, Volpe A, Camus P, Triqueneaux S, Vermeulen G 2012 Cryogenics 52 471

    [66]

    Camus P, Vermeulen G, Volpe A, Triqueneaux S, Benoit A, Butterworth J, D’Escrivan S, Tirolien T 2014. J Low Temp Phys 176 1069

    [67]

    A. Nagata, H. Sugita, K. Shinozaki, Y. Sato 2018 Cryocoolers 20, Burlington, VT, June18-21, 2018pp 357-367

    [68]

    Keisuke S, Kenichiro S, Yoichi S, Hiroyuki S, Kazuhisa M, Takao N, Shoji T, Katsuhiro N, Gerard V, Philippe C, Sebastien T, Sylvain M, Stephane D 2016 Trans. JSASS Aerospace Tech.14 27

    [69]

    Mandal Bidhan Chandra, Nisith Kr D. 2017 IOP Conf. Ser.: Mater. Sci. Eng.171 1

    [70]

    J. P. Harriso 1979 Journal of Low Temperature Physics 37 1

    [71]

    Zheng M W 2022 Ph. D. Dissertation (Beijing: University of Chinese Academy of Science/Technical Institute of Physics and Chemistry) (in Chinese) [郑茂文 2022 博士学位论文(北京:中国科学院大学/理化技术研究所)]

    [72]

    Jin D, Ran Q Z, Cao L Z 1995 Ultra low Temperature Technologies(Hefei: Press of University of Science and Technology of China) [金铎,冉启泽,曹烈兆. 极低温(mK)技术概论(D.S.Betts著) (北京:中国科学技术大学出版社)]

    [73]

    Chaudhry G 2009 Ph. D. Dissertation (US: Massachusetts Institute of Technology)

  • [1] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题. 物理学报, doi: 10.7498/aps.73.20230592
    [2] 吴宇恺, 段路明. 离子阱量子计算规模化的研究进展. 物理学报, doi: 10.7498/aps.72.20231128
    [3] 范桁. 量子计算纠错取得突破性进展. 物理学报, doi: 10.7498/aps.72.20230330
    [4] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究. 物理学报, doi: 10.7498/aps.72.20231102
    [5] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究. 物理学报, doi: 10.7498/aps.72.20222257
    [6] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, doi: 10.7498/aps.71.20220596
    [7] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20220635
    [8] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, doi: 10.7498/aps.71.20220224
    [9] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, doi: 10.7498/aps.71.20212245
    [10] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, doi: 10.7498/aps.71.20221900
    [11] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, doi: 10.7498/aps.70.20211492
    [12] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, doi: 10.7498/aps.70.20210923
    [13] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, doi: 10.7498/aps.70.20202237
    [14] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, doi: 10.7498/aps.69.20200812
    [15] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, doi: 10.7498/aps.68.20190142
    [16] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, doi: 10.7498/aps.67.20180845
    [17] 范桁. 量子计算与量子模拟. 物理学报, doi: 10.7498/aps.67.20180710
    [18] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, doi: 10.7498/aps.62.010301
    [19] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, doi: 10.7498/aps.57.689
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  144
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-28

/

返回文章
返回