搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷凝泵型稀释制冷机实验研究

俎红叶 程维军 王亚男 王晓涛 李珂 戴巍

引用本文:
Citation:

冷凝泵型稀释制冷机实验研究

俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍

Experimental analysis of condensation-pump dilution refrigerators

Zu Hong-Ye, Cheng Wei-Jun, Wang Ya-Nan, Wang Xiao-Tao, Li Ke, Dai Wei
PDF
HTML
导出引用
  • 极低温(< 1 K)环境对于凝聚态物理、天文观测和量子计算等前沿领域具有重要意义, 其中稀释制冷是应用最广泛的极低温制冷技术. 针对小冷量应用的冷凝泵型稀释制冷机利用冷凝泵实现3He的低温循环, 无需复杂的机械泵组和连接气路, 具有结构紧凑、操作便利、成本低等优势, 从而成为新的研究热点. 本文围绕冷凝泵型稀释制冷机, 介绍了其制冷原理和系统架构, 设计并搭建了预冷系统、稀释低温系统和测量系统, 并对整机进行了实验研究. 辅助多测温点测量系统, 通过多次实验总结了稀释低温循环过程, 由吸附制冷机预冷、稀释循环启动和稀释制冷三个阶段组成, 并且分析了系统启动和运行特性. 经过测试, 实验最低温度可达108 mK. 该制冷机可以很方便地拓展低温平台的制冷温区, 为凝聚态物理、材料、医学研究等前沿领域提供重要支撑.
    Subkelvin refrigeration is necessary for many frontier research fields such as condensed-matter physics, astronomical observation, and quantum computing. Dilution refrigeration utilizes the entropy increase of 3He atoms when they flow from the concentrated phase to dilute phase to provide cooling, and has the advantages of continuous operation, large cooling power and no electromagnetic interference. It is the most widely used method among subkelvin refrigeration at present. For research scenarios requiring small cooling powers, the condensation-pump dilution refrigerator utilizes a condensation pump to achieve cold cycle of 3He, with no need of complex ambient pump systems or gas circuits, and has become a new research topic because of its compact structure, convenient operation and low cost.A condensation-pump dilution refrigerator is built and investigated in this work. The refrigerator consists of a mixing chamber, a continuous tube-in-tube heat exchanger, a still, and a condensation pump, and it is precooled by a GM-type pulse tube cryocooler below 4 K and an adsorption refrigerator below 400 mK. The 3He evaporates from the still, condenses in the condensation pump and provides cooling in the mixing chamber after being precooled in the heat exchanger.By means of the multi-temperature measuring system, the cold cycle of the dilution refrigerator can be summarized as three stages: precooling by the adsorption refrigerator, cycle start-up, and continuous dilution cooling. The operating characteristics of the system are analyzed. The experiments showed that the lowest no-load temperature reached 108 mK when the condenser temperature was 378 mK. Meanwhile, the temperature oscillation appeared, and the possible reasons are analyzed. In the future, the system performance will be improved by 1) adjusting the spiral mode and position of the continuous tube-in-tube heat exchanger and 2) increasing the heat transfer area between the cold plate and the fluid in the mixing chamber to reduce the fluid-solid temperature difference.The refrigerator introduced in this work can easily expand many existing cryogenic platforms working at higher temperatures, and effectively support developments of high-end equipment.
      通信作者: 戴巍, cryodw@mail.ipc.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFC2203303)和国家自然科学基金(批准号: 52176027)资助的课题.
      Corresponding author: Dai Wei, cryodw@mail.ipc.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFC2203303) and the National Natural Science Foundation of China (Grant No. 52176027).
    [1]

    Pobell F 2007 Matter and Methods at Low Temperatures (3rd Ed.) (Berlin Heidelberg: Springer) p467

    [2]

    London H 1951 Proceedings of International Conference on Low Temperature Physics (LT2) Oxford, UK p157

    [3]

    Das T P, Ouboter R D B, Taconis K W 1965 Proceedings of Ninth International Conference on Low-Temperature Physics Ohio, US, August 31–September 4, 1964 p1253

    [4]

    Cousins D J, Fisher S N, Guénault A M, et al. 1999 J. Low Temp. Phys. 114 547Google Scholar

    [5]

    Zu H, Dai W, de Waele A T A M 2022 Cryogenics 121 103390Google Scholar

    [6]

    Ji Z, Fan J, Dong J, Bian Y, Cheng Z G 2022 Chin. Phys. B 31 102703Google Scholar

    [7]

    Brisson J G 1998 J. Low Temp. Phys. 111 181Google Scholar

    [8]

    May A J 2016 M. S. Thesis (Manchester: The University of Manchester)

    [9]

    Mikheev V A, Maidanov V A, Mikhin N P 1984 Cryogenics 24 190Google Scholar

    [10]

    Mohandas P, Cowan B P, Saunders J, et al. 1994 Physica B 194 55Google Scholar

    [11]

    Prouvé T, Luchier N, Duband L 2008 Cryocoolers 15 California, US, June 9–12, 2008 p497

    [12]

    Teleberg G, Chase S T, Piccirillo L 2006 Proceedings of SPIE p6275OD-1

    [13]

    May A J 2019 Ph. D. Dissertation (Manchester: The University of Manchester)

    [14]

    May A J, Azzoni S, Banys D, Coppi G, Haynes V, McCulloch M A, Melhuish S J, Piccirillo L, Wenninger J ICEC-ICMC 2018, IOP Conference Series: Materials Science and Engineering Oxford, United Kingdom, September 3–7, 2018 p0121351

    [15]

    Azzoni S, May A, Chase S, Coppi G, Kenny L, Melhuish S, Piccirillo L, Suzuki A, Wenninger J 2020 J. Low Temp. Phys. 199 771Google Scholar

    [16]

    Chase S T, Brien T L R, Doyle S M, Kenny L C 2018 IOP Conference Series: Materials Science and Engineering Oxford, United Kingdom, September 3–7, 2018

    [17]

    Sivokon V E, Dotsenko V V, Pogorelov L A, Sobolev V I 1992 Cryogenics 32 207Google Scholar

    [18]

    Wheatley J C, Rapp R E, Johnson R T 1971 J. Low Temp. Phys. 4 1Google Scholar

    [19]

    Zu H Y, Li K, Wang X T, Wang Y N, Shen J, Dai W 2022 Cryocoolers 22 Boulder, USA, June 27–30, 2022 p365

    [20]

    Chase Cryogenics https://www.chasecryogenics.com/products [2022-09-18]

    [21]

    Lakeshore Model 372 AC Bridge and Temperature Controller http://www.lakeshore.com/products/product-detail/model-372/ [2022-09-18]

  • 图 1  冷凝泵型稀释制冷机示意图(浅蓝色为稀相, 深蓝色为浓相, 箭头为流动方向)

    Fig. 1.  Schematic of condensation-pump dilution refrigerator (Light blue shows the dilute phase, dark blue shows the concentrated phase, and the arrow shows the direction of flow).

    图 2   (a) 冷凝泵示意图; (b) 混合室示意图

    Fig. 2.  (a) Schematic of the condensation pump; (b) schematic of the mixing chamber.

    图 3  稀释低温实验系统实物图

    Fig. 3.  Photo of the low-temperature parts of the condensation-pump dilution refrigerator.

    图 4  吸附制冷机温度曲线图

    Fig. 4.  Temperature curves of the adsorption refrigerator.

    图 5  冷凝泵型稀释制冷机低温循环温度曲线图

    Fig. 5.  Temperature curve of the cold cycle of the condensation-pump dilution refrigerator

    图 6  混合室温度曲线

    Fig. 6.  Temperature curve of the mixing chamber.

    图 7  温度波动

    Fig. 7.  Temperature oscillation.

    表 1  吸附制冷机测试结果

    Table 1.  Experimental results of the adsorption refrigerator.

    加热量/μW平衡温度/mK维持时间/h计算制冷功率/μW
    90366.216.0100
    144387.010.1164
    162393.58.9166
    下载: 导出CSV
  • [1]

    Pobell F 2007 Matter and Methods at Low Temperatures (3rd Ed.) (Berlin Heidelberg: Springer) p467

    [2]

    London H 1951 Proceedings of International Conference on Low Temperature Physics (LT2) Oxford, UK p157

    [3]

    Das T P, Ouboter R D B, Taconis K W 1965 Proceedings of Ninth International Conference on Low-Temperature Physics Ohio, US, August 31–September 4, 1964 p1253

    [4]

    Cousins D J, Fisher S N, Guénault A M, et al. 1999 J. Low Temp. Phys. 114 547Google Scholar

    [5]

    Zu H, Dai W, de Waele A T A M 2022 Cryogenics 121 103390Google Scholar

    [6]

    Ji Z, Fan J, Dong J, Bian Y, Cheng Z G 2022 Chin. Phys. B 31 102703Google Scholar

    [7]

    Brisson J G 1998 J. Low Temp. Phys. 111 181Google Scholar

    [8]

    May A J 2016 M. S. Thesis (Manchester: The University of Manchester)

    [9]

    Mikheev V A, Maidanov V A, Mikhin N P 1984 Cryogenics 24 190Google Scholar

    [10]

    Mohandas P, Cowan B P, Saunders J, et al. 1994 Physica B 194 55Google Scholar

    [11]

    Prouvé T, Luchier N, Duband L 2008 Cryocoolers 15 California, US, June 9–12, 2008 p497

    [12]

    Teleberg G, Chase S T, Piccirillo L 2006 Proceedings of SPIE p6275OD-1

    [13]

    May A J 2019 Ph. D. Dissertation (Manchester: The University of Manchester)

    [14]

    May A J, Azzoni S, Banys D, Coppi G, Haynes V, McCulloch M A, Melhuish S J, Piccirillo L, Wenninger J ICEC-ICMC 2018, IOP Conference Series: Materials Science and Engineering Oxford, United Kingdom, September 3–7, 2018 p0121351

    [15]

    Azzoni S, May A, Chase S, Coppi G, Kenny L, Melhuish S, Piccirillo L, Suzuki A, Wenninger J 2020 J. Low Temp. Phys. 199 771Google Scholar

    [16]

    Chase S T, Brien T L R, Doyle S M, Kenny L C 2018 IOP Conference Series: Materials Science and Engineering Oxford, United Kingdom, September 3–7, 2018

    [17]

    Sivokon V E, Dotsenko V V, Pogorelov L A, Sobolev V I 1992 Cryogenics 32 207Google Scholar

    [18]

    Wheatley J C, Rapp R E, Johnson R T 1971 J. Low Temp. Phys. 4 1Google Scholar

    [19]

    Zu H Y, Li K, Wang X T, Wang Y N, Shen J, Dai W 2022 Cryocoolers 22 Boulder, USA, June 27–30, 2022 p365

    [20]

    Chase Cryogenics https://www.chasecryogenics.com/products [2022-09-18]

    [21]

    Lakeshore Model 372 AC Bridge and Temperature Controller http://www.lakeshore.com/products/product-detail/model-372/ [2022-09-18]

  • [1] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [2] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241211
    [3] 刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏. 4 K大冷量GM型脉冲管制冷机. 物理学报, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [4] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究. 物理学报, 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [5] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [6] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机. 物理学报, 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [7] 何济洲, 徐帅. 基于一维弹道导体的三端纳米线制冷机的性能优化. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211077
    [8] 付柏山, 廖奕, 周俊. 稀释制冷机及其中的热交换问题. 物理学报, 2021, 70(23): 230202. doi: 10.7498/aps.70.20211760
    [9] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [10] 李唯, 符婧, 杨贇贇, 何济洲. 光子驱动量子点制冷机. 物理学报, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [11] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [12] 张荣, 卢灿灿, 李倩文, 刘伟, 白龙. 线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析. 物理学报, 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [13] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [14] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环. 物理学报, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [15] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响. 物理学报, 2011, 60(4): 040509. doi: 10.7498/aps.60.040509
    [16] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [17] 汪 莱, 张贤鹏, 席光义, 赵 维, 李洪涛, 江 洋, 韩彦军, 罗 毅. MOVPE低温生长的n型GaN电学特性研究. 物理学报, 2008, 57(9): 5923-5927. doi: 10.7498/aps.57.5923
    [18] 何济洲, 王 磊, 李俊彬. 量子简并性对气体斯特林制冷循环性能的影响. 物理学报, 2005, 54(1): 24-29. doi: 10.7498/aps.54.24
    [19] 秦伟平, 秦冠仕, 张继森, 吴长锋, 王继伟, 杜国同. 单分子-光子制冷泵的热力学行为. 物理学报, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
    [20] 孟继宝, 陈兆甲, 雒建林, 白海洋, 汪卫华, 郑萍, 张杰, 苏少奎, 王玉鹏. 重费密子系统CeCu6-xNix的极低温电阻研究. 物理学报, 2001, 50(8): 1632-1636. doi: 10.7498/aps.50.1632
计量
  • 文章访问数:  4434
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-25
  • 修回日期:  2023-02-06
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-04-20

/

返回文章
返回