搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空封装含Herriott多反射腔原子气室及其在原子磁力仪中的应用

谢子平 郝传鹏 盛东

引用本文:
Citation:

真空封装含Herriott多反射腔原子气室及其在原子磁力仪中的应用

谢子平, 郝传鹏, 盛东

Atomic vapor cells with Herriott-cavity sealed under vacuum and their applications in atomic magnetometry

XIE Ziping, HAO Chuanpeng, SHENG Dong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文主要研究用于精密测量的含多反射腔原子气室的标准化制备方法: 一方面将Herriott多反射腔技术和阳极键合技术相结合, 另一方面在全真空条件下密封含多反射腔原子气室. 这样制备出的新型气室可以广泛应用于原子器件中, 在提升测量灵敏度的同时, 提高器件的标准化程度. 本文介绍这种原子气室的制备方法的同时, 还通过气室在磁光双共振碱金属原子磁力仪中的应用展示其工作潜能. 该示范展示了利用含22次反射的多反射腔, 充有400 Torr (1 Torr = 1.33×102 Pa) 氮气和自然丰度铷原子气室获得的磁共振信号, 并以此信号为基础在10—20 Hz的频率区间测得了95 fT/Hz1/2的磁场灵敏度. 之后, 我们将把基于这种技术制作的气室拓展到对气室质量要求较高的氦原子磁力仪和核自旋原子共磁力仪中.
    This paper focuses on standardized fabrications of atomic vapor cells with multipass cells. For this purpose, we build a vacuum system that enables the sealing of the mulipass-cavity-assisted cell under vacuum. Alkali atoms are prepared inside a glass holder, and the tip of the holder is broken by controlled collisions under vacuum. Atoms are then transferred to a cell glass body part by heating. Once enough atoms accumulate inside the glass part, buffer and quenching gases are filled into the system, and the glass body part is moved to contact the silicon wafer which is bonded with a Herriott-cavity. Then the cavity part and the glass part are sealed together using the anodic bonding technique. The resulting vapor cells provide enhanced measurement sensitivity and improved device standardization, which allows for seamless replacements of each other in practical applications. The performances of these cells are tested, including a test in a double-resonance alkali-metal atomic magnetometer. A magnetic field sensitivity of 95 fT/Hz1/2 is achieved in a frequency range from 10 to 20 Hz with a multipass cell filled with 400 Torr N2 and natural Rb atoms at 100 ℃. The technology and cells developed in this work are expected to have wide applications in atomic devices, especially in He magnetometers and nuclear-spin atomic co-magnetometers, which have special requirements for cell qualities.
  • 图 1  光在本文设计的多反射腔内传播示意图, 两个腔镜键合在一片硅片上形成多反射腔模块, 硅片厚度为0.5 mm, 尺寸为21 mm × 33 mm

    Fig. 1.  Illustration of the light propagation in the multipass cavity made in this paper, the two cavity mirrors are bonded on a piece of silicon wafer, whose dimension is 0.5 mm × 21 mm × 33 mm.

    图 2  含腔气室真空封装装置 (a) 真空封装腔体简图, a1和a2为1号和2号一维位移台, a3为二维位移台; (b) 铷原子充入部分, b1为加热区域(此处内侧有放置加热片的空槽), b2为尼龙隔热层, b3为玻璃罩放置平台, b4为自制碱金属原子源, b5为碱金属原子源尾管, 之后用被撞击碎开; (c) 阳极键合封装部分, c1为用于撞击b5的刀片, c2为陶瓷绝缘层, c3为含加热片的陶瓷层, c4为导热铜块, c5为与b3相同

    Fig. 2.  Setup for vacuum-sealing the vapor cell with a multipass cavity: (a) Schematic diagram of the main vacuum chamber, a1 and a2 are No. 1 and No. 2 one-dimensional displacement stages, a3 is two-dimensional displacement stage; (b) atom filling part, b1 is the place to put a heater, b2 is nylon insulation layer, b3 is the platform for the glass container, b4 is the home-made atom source, b5 is the bottom part of the atom source, which is to be broken later in the process; (c) anodic bonding and packaging part, c1 is blade, c2 is ceramic insulation layer, c3 is ceramic insulation layer with a heater, c4 is copper, c5 is the same as b3.

    图 3  利用含400 Torr N2和自然丰度Rb原子气室得到的在Rb D1线跃迁线附近的吸收光谱, 空心点为实验数据, 实线为(2)式的拟合结果, 内嵌图为气室的照片

    Fig. 3.  The light absorption spectrum of Rb atoms near D1 line using an atomic vapor cell filled with 400 Torr N2 and Rb atoms of natural abundance, the dots are the experimental data, and the line is the fitting result, the inset is the picture of the cell.

    图 4  碱金属原子磁光双共振磁力仪实验装置图, 其中探测光通过单模保偏光纤耦合到磁屏蔽内层的磁力仪探头上

    Fig. 4.  A schematic plot of the double-resonance magnetometer setup, and the probe beam is fiber coupled to the sensor head inside the magnetic shields.

    图 5  (a)原子磁力仪的响应曲线及采用(7)式和(8)式函数拟合的结果; (b) 磁力仪系统灵敏度, 数据已经过磁力仪的频率响应修正

    Fig. 5.  (a) Experiment and fitting results of the magnetometer responses; (b) the field sensitivity of the double-resonance magnetometer, where the results have been corrected using the frequency responses of the magnetometer.

  • [1]

    Kitching J 2018 Appl. Phys. Rev. 5 031302Google Scholar

    [2]

    Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A, Moreland J 2004 Appl. Phys. Lett. 85 1460Google Scholar

    [3]

    Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601Google Scholar

    [4]

    Budker D, Kimball D F J 2013 Optical Magnetometry (Cambridge: Cambridge University Press

    [5]

    Budker D, Romalis M 2007 Nat. Phys. 3 227Google Scholar

    [6]

    Knappe S, Velichansky V, Robinson H G, Kitching J, Hollberg L 2003 Rev. Sci. Instrum. 74 3142Google Scholar

    [7]

    Liew L A, Knappe S, Moreland J, Robinson H, Hollberg L, Kitching J 2004 Appl. Phys. Lett. 84 14 2694

    [8]

    Mhaskar R, Knappe S, Kitching J 2012 Appl. Phys. Lett. 101 241105Google Scholar

    [9]

    Guo Q Q, Hu T, Feng X Y, Zhang M K, Chen C Q, Zhang X, Yao Z K, Xu J Y, Wang Q, Fu F Y, Zhang Y, Chang Y, Yang X D 2023 Chin. Phys. B 32 040702Google Scholar

    [10]

    Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 657Google Scholar

    [11]

    Zhang R, Xiao W, Ding Y D, Feng Y L, Peng X, Shen L, Sun C X, Wu T, Wu Y L, Yang Y C, Zheng Z Y, Zhang X Z, Chen J B, Guo H 2020 Sci. Adv. 6 aba8792Google Scholar

    [12]

    Gavazzi B, Bertrand L, Munschy M, Mercier de Lépinay J, Diraison M, Géraud Y 2020 J. Geophys. Res. Sol. Ea. 125 e2019JB018870Google Scholar

    [13]

    Nabighian M N, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Peirce J W, Phillips J D, Ruder M E 2005 75th Anniversary: The Historical Development of the Magnetic Method in Explorationhistorical Development of Magnetic Method Geophysics 70 33ND

    [14]

    Pollinger A, Lammegger R, Magnes W, Hagen C, Ellmeier M, Jernej I, Leichtfried M, Kürbisch C, Maierhofer R, Wallner R, Fremuth G, Amtmann C, Betzler A, Delva M, Prattes G, Baumjohann W 2018 Meas. Sci. Technol. 29 095103Google Scholar

    [15]

    Dougherty M K, Khurana K K, Neubauer F M, Russell C T, Saur J, Leisner J S, Burton M E 2006 Science 311 1406Google Scholar

    [16]

    Afach S, Buchler B C, Budker D, Dailey C, Derevianko A, Dumont V, Figueroa N L, Gerhardt I, Grujić Z D, Guo H, Hao C P, Hamilton P S, Hedges M, Kimball D F J, Kim D, Khamis S, Kornack T, Lebedev V, Lu Z T, Roig H M, Monroy M, Padniuk M, Palm C A, Park S Y, Paul K V, Penaflor A, Peng X, Pospelov M, Preston R, Pustelny S, Scholtes T, Segura P C, Semertzidis Y K, Sheng D, Shin Y C, Smiga J A, Stalnaker J E, Sulai I, Tandon D, Wang T, Weis A, Wickenbrock A, Wilson T, Wu T, Wurm D, Xiao W, Yang Y C, Yu D R, Zhang J W 2021 Nat. Phys. 17 1396Google Scholar

    [17]

    Sachdeva N, Fan I, Babcock E, Burghoff M, Chupp T E, Degenkolb S, Fierlinger P, Haude S, Kraegeloh E, Kilian W, Knappe-Grüneberg S, Kuchler F, Liu T, Marino M, Meinel J, Rolfs K, Salhi Z, Schnabel A, Singh J T, Stuiber S, Terrano W A, Trahms L, Voigt J 2019 Phys. Rev. Lett. 123 143003Google Scholar

    [18]

    Li S, Vachaspati P, Sheng D, Dural N, Romalis M V 2011 Phys. Rev. A 84 061403Google Scholar

    [19]

    Sheng D, Li S, Dural N, Romalis M V 2013 Phys. Rev. Lett. 110 160802Google Scholar

    [20]

    Yuan L L, Huang J, Fan W F, Wang Z, Zhang K, Pei H Y, Cai Z, Gao H, Liu S X, Quan W 2023 Measurement 217 113043Google Scholar

    [21]

    Sheng D, Kabcenell A, Romalis M V 2014 Phys. Rev. Lett. 113 163002Google Scholar

    [22]

    Wang T Y, Peng J P, Li J L, Liu Z C, Mao Y K 2024 Sensor. Actuat. A Phys. 374 115461Google Scholar

    [23]

    Silver J A 2005 Appl. Opt. 44 6545Google Scholar

    [24]

    Cai B, Hao C P, Qiu Z R, Yu Q Q, Xiao W, Sheng D 2020 Phys. Rev. A 101 053436Google Scholar

    [25]

    蔡波 2020 博士学位论文 (合肥: 中国科学技术大学)

    Cai B 2020 Ph. D. Dissertation ( Hefei: University of Science and Technology of China

    [26]

    Cai B, Sheng D 2019 CN Patent CN110187296A [蔡波, 盛东 2019 CN110187296A]

    Cai B, Sheng D 2019 CN Patent CN110187296A

    [27]

    Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University

    [28]

    Kluttz K A, Averett T D, Wolin B A 2013 Phys. Rev. A 87 032516Google Scholar

    [29]

    Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280Google Scholar

    [30]

    Brossel J, Bitter F 1952 Phys. Rev. 86 308Google Scholar

    [31]

    Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Clarendon Press) pp44-46

    [32]

    Xiao Y, Novikova I, Phillips D F, Walsworth R L 2006 Phys. Rev. Lett. 96 043601Google Scholar

    [33]

    Lucivero V G, McDonough N D, Dural N, Romalis M V 2017 Phys. Rev. A 96 062702Google Scholar

    [34]

    Smullin S J, Savukov I M, Vasilakis G, Ghosh R K, Romalis M V 2009 Phys. Rev. A 80 033420Google Scholar

    [35]

    Yu Q Q, Liu S Q, Wang X K, Sheng D 2023 Phys. Rev. A 107 043110Google Scholar

    [36]

    Mathur B, Tang H, Happer W 1968 Phys. Rev. 171 11Google Scholar

    [37]

    Liu Y, Peng X, Wang H D, Wang B W, Yi K W, Sheng D, Guo H 2022 Opt. Lett. 47 5252Google Scholar

    [38]

    Hao C P, Yu Q Q, Yuan C Q, Liu S Q, Sheng D 2021 Phys. Rev. A 103 053523Google Scholar

  • [1] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, doi: 10.7498/aps.71.20212204
    [2] 黄文艺, 杨保东, 樊健, 王军民, 周海涛. 基于铯原子气室反抽运光增强相干蓝光. 物理学报, doi: 10.7498/aps.71.20220480
    [3] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究. 物理学报, doi: 10.7498/aps.71.20220775
    [4] 缪培贤, 王涛, 史彦超, 高存绪, 蔡志伟, 柴国志, 陈大勇, 王建波. 在开磁路中利用抽运-检测型铷原子磁力仪测量软磁材料的矫顽力. 物理学报, doi: 10.7498/aps.71.20221618
    [5] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量. 物理学报, doi: 10.7498/aps.71.20211122
    [6] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度. 物理学报, doi: 10.7498/aps.70.20210920
    [7] 李辉, 江敏, 朱振南, 徐文杰, 徐旻翔, 彭新华. 铷-氙气室原子磁力仪系统磁场测量能力的标定. 物理学报, doi: 10.7498/aps.68.20190868
    [8] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, doi: 10.7498/aps.68.20181872
    [9] 张军海, 王平稳, 韩煜, 康崇, 孙伟民. 共振线极化光实现原子矢量磁力仪的理论研究. 物理学报, doi: 10.7498/aps.67.20172108
    [10] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究. 物理学报, doi: 10.7498/aps.66.160701
    [11] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究. 物理学报, doi: 10.7498/aps.65.210702
    [12] 顾源, 石荣晔, 王延辉. 分布式反馈激光抽运铯磁力仪灵敏度相关参数研究. 物理学报, doi: 10.7498/aps.63.110701
    [13] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, doi: 10.7498/aps.63.020702
    [14] 李楠, 黄凯凯, 陆璇辉. 提高激光抽运铯原子磁力仪灵敏度的研究. 物理学报, doi: 10.7498/aps.62.133201
    [15] 高峰, 常宏, 王心亮, 田晓, 张首刚. 锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究. 物理学报, doi: 10.7498/aps.60.050601
    [16] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, doi: 10.7498/aps.60.114207
    [17] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究. 物理学报, doi: 10.7498/aps.59.877
    [18] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, doi: 10.7498/aps.58.3903
    [19] 冯勋立, 徐至展, 夏宇兴. 压缩真空态光场抽运的双光子激光. 物理学报, doi: 10.7498/aps.49.235
    [20] 杨丰, 刘淑琴, 董太乾. 85Rb灯对87Rb原子的光抽运. 物理学报, doi: 10.7498/aps.33.116
计量
  • 文章访问数:  189
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-23
  • 修回日期:  2025-04-13
  • 上网日期:  2025-04-23

/

返回文章
返回