-
本文主要研究用于精密测量的含多反射腔原子气室的标准化制备方法: 一方面将Herriott多反射腔技术和阳极键合技术相结合, 另一方面在全真空条件下密封含多反射腔原子气室. 这样制备出的新型气室可以广泛应用于原子器件中, 在提升测量灵敏度的同时, 提高器件的标准化程度. 本文介绍这种原子气室的制备方法的同时, 还通过气室在磁光双共振碱金属原子磁力仪中的应用展示其工作潜能. 该示范展示了利用含22次反射的多反射腔, 充有400 Torr (1 Torr = 1.33×102 Pa) 氮气和自然丰度铷原子气室获得的磁共振信号, 并以此信号为基础在10—20 Hz的频率区间测得了95 fT/Hz1/2的磁场灵敏度. 之后, 我们将把基于这种技术制作的气室拓展到对气室质量要求较高的氦原子磁力仪和核自旋原子共磁力仪中.This paper focuses on standardized fabrications of atomic vapor cells with multipass cells. For this purpose, we build a vacuum system that enables the sealing of the mulipass-cavity-assisted cell under vacuum. Alkali atoms are prepared inside a glass holder, and the tip of the holder is broken by controlled collisions under vacuum. Atoms are then transferred to a cell glass body part by heating. Once enough atoms accumulate inside the glass part, buffer and quenching gases are filled into the system, and the glass body part is moved to contact the silicon wafer which is bonded with a Herriott-cavity. Then the cavity part and the glass part are sealed together using the anodic bonding technique. The resulting vapor cells provide enhanced measurement sensitivity and improved device standardization, which allows for seamless replacements of each other in practical applications. The performances of these cells are tested, including a test in a double-resonance alkali-metal atomic magnetometer. A magnetic field sensitivity of 95 fT/Hz1/2 is achieved in a frequency range from 10 to 20 Hz with a multipass cell filled with 400 Torr N2 and natural Rb atoms at 100 ℃. The technology and cells developed in this work are expected to have wide applications in atomic devices, especially in He magnetometers and nuclear-spin atomic co-magnetometers, which have special requirements for cell qualities.
-
Keywords:
- Herriott cavity /
- atomic magnetometer /
- optical pumping /
- vacuum sealing
-
图 2 含腔气室真空封装装置 (a) 真空封装腔体简图, a1和a2为1号和2号一维位移台, a3为二维位移台; (b) 铷原子充入部分, b1为加热区域(此处内侧有放置加热片的空槽), b2为尼龙隔热层, b3为玻璃罩放置平台, b4为自制碱金属原子源, b5为碱金属原子源尾管, 之后用被撞击碎开; (c) 阳极键合封装部分, c1为用于撞击b5的刀片, c2为陶瓷绝缘层, c3为含加热片的陶瓷层, c4为导热铜块, c5为与b3相同
Fig. 2. Setup for vacuum-sealing the vapor cell with a multipass cavity: (a) Schematic diagram of the main vacuum chamber, a1 and a2 are No. 1 and No. 2 one-dimensional displacement stages, a3 is two-dimensional displacement stage; (b) atom filling part, b1 is the place to put a heater, b2 is nylon insulation layer, b3 is the platform for the glass container, b4 is the home-made atom source, b5 is the bottom part of the atom source, which is to be broken later in the process; (c) anodic bonding and packaging part, c1 is blade, c2 is ceramic insulation layer, c3 is ceramic insulation layer with a heater, c4 is copper, c5 is the same as b3.
图 3 利用含400 Torr N2和自然丰度Rb原子气室得到的在Rb D1线跃迁线附近的吸收光谱, 空心点为实验数据, 实线为(2)式的拟合结果, 内嵌图为气室的照片
Fig. 3. The light absorption spectrum of Rb atoms near D1 line using an atomic vapor cell filled with 400 Torr N2 and Rb atoms of natural abundance, the dots are the experimental data, and the line is the fitting result, the inset is the picture of the cell.
-
[1] Kitching J 2018 Appl. Phys. Rev. 5 031302
Google Scholar
[2] Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A, Moreland J 2004 Appl. Phys. Lett. 85 1460
Google Scholar
[3] Biedermann G W, McGuinness H J, Rakholia A V, Jau Y Y, Wheeler D R, Sterk J D, Burns G R 2017 Phys. Rev. Lett. 118 163601
Google Scholar
[4] Budker D, Kimball D F J 2013 Optical Magnetometry (Cambridge: Cambridge University Press
[5] Budker D, Romalis M 2007 Nat. Phys. 3 227
Google Scholar
[6] Knappe S, Velichansky V, Robinson H G, Kitching J, Hollberg L 2003 Rev. Sci. Instrum. 74 3142
Google Scholar
[7] Liew L A, Knappe S, Moreland J, Robinson H, Hollberg L, Kitching J 2004 Appl. Phys. Lett. 84 14 2694
[8] Mhaskar R, Knappe S, Kitching J 2012 Appl. Phys. Lett. 101 241105
Google Scholar
[9] Guo Q Q, Hu T, Feng X Y, Zhang M K, Chen C Q, Zhang X, Yao Z K, Xu J Y, Wang Q, Fu F Y, Zhang Y, Chang Y, Yang X D 2023 Chin. Phys. B 32 040702
Google Scholar
[10] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer S S, Muñoz L D, Mullinger K J, Tierney T M, Bestmann S, Barnes G R, Bowtell R, Brookes M J 2018 Nature 555 657
Google Scholar
[11] Zhang R, Xiao W, Ding Y D, Feng Y L, Peng X, Shen L, Sun C X, Wu T, Wu Y L, Yang Y C, Zheng Z Y, Zhang X Z, Chen J B, Guo H 2020 Sci. Adv. 6 aba8792
Google Scholar
[12] Gavazzi B, Bertrand L, Munschy M, Mercier de Lépinay J, Diraison M, Géraud Y 2020 J. Geophys. Res. Sol. Ea. 125 e2019JB018870
Google Scholar
[13] Nabighian M N, Grauch V J S, Hansen R O, LaFehr T R, Li Y, Peirce J W, Phillips J D, Ruder M E 2005 75th Anniversary: The Historical Development of the Magnetic Method in Explorationhistorical Development of Magnetic Method Geophysics 70 33ND
[14] Pollinger A, Lammegger R, Magnes W, Hagen C, Ellmeier M, Jernej I, Leichtfried M, Kürbisch C, Maierhofer R, Wallner R, Fremuth G, Amtmann C, Betzler A, Delva M, Prattes G, Baumjohann W 2018 Meas. Sci. Technol. 29 095103
Google Scholar
[15] Dougherty M K, Khurana K K, Neubauer F M, Russell C T, Saur J, Leisner J S, Burton M E 2006 Science 311 1406
Google Scholar
[16] Afach S, Buchler B C, Budker D, Dailey C, Derevianko A, Dumont V, Figueroa N L, Gerhardt I, Grujić Z D, Guo H, Hao C P, Hamilton P S, Hedges M, Kimball D F J, Kim D, Khamis S, Kornack T, Lebedev V, Lu Z T, Roig H M, Monroy M, Padniuk M, Palm C A, Park S Y, Paul K V, Penaflor A, Peng X, Pospelov M, Preston R, Pustelny S, Scholtes T, Segura P C, Semertzidis Y K, Sheng D, Shin Y C, Smiga J A, Stalnaker J E, Sulai I, Tandon D, Wang T, Weis A, Wickenbrock A, Wilson T, Wu T, Wurm D, Xiao W, Yang Y C, Yu D R, Zhang J W 2021 Nat. Phys. 17 1396
Google Scholar
[17] Sachdeva N, Fan I, Babcock E, Burghoff M, Chupp T E, Degenkolb S, Fierlinger P, Haude S, Kraegeloh E, Kilian W, Knappe-Grüneberg S, Kuchler F, Liu T, Marino M, Meinel J, Rolfs K, Salhi Z, Schnabel A, Singh J T, Stuiber S, Terrano W A, Trahms L, Voigt J 2019 Phys. Rev. Lett. 123 143003
Google Scholar
[18] Li S, Vachaspati P, Sheng D, Dural N, Romalis M V 2011 Phys. Rev. A 84 061403
Google Scholar
[19] Sheng D, Li S, Dural N, Romalis M V 2013 Phys. Rev. Lett. 110 160802
Google Scholar
[20] Yuan L L, Huang J, Fan W F, Wang Z, Zhang K, Pei H Y, Cai Z, Gao H, Liu S X, Quan W 2023 Measurement 217 113043
Google Scholar
[21] Sheng D, Kabcenell A, Romalis M V 2014 Phys. Rev. Lett. 113 163002
Google Scholar
[22] Wang T Y, Peng J P, Li J L, Liu Z C, Mao Y K 2024 Sensor. Actuat. A Phys. 374 115461
Google Scholar
[23] Silver J A 2005 Appl. Opt. 44 6545
Google Scholar
[24] Cai B, Hao C P, Qiu Z R, Yu Q Q, Xiao W, Sheng D 2020 Phys. Rev. A 101 053436
Google Scholar
[25] 蔡波 2020 博士学位论文 (合肥: 中国科学技术大学)
Cai B 2020 Ph. D. Dissertation ( Hefei: University of Science and Technology of China
[26] Cai B, Sheng D 2019 CN Patent CN110187296A [蔡波, 盛东 2019 CN110187296A]
Cai B, Sheng D 2019 CN Patent CN110187296A
[27] Seltzer S J 2008 Ph. D. Dissertation (Princeton: Princeton University
[28] Kluttz K A, Averett T D, Wolin B A 2013 Phys. Rev. A 87 032516
Google Scholar
[29] Bell W E, Bloom A L 1961 Phys. Rev. Lett. 6 280
Google Scholar
[30] Brossel J, Bitter F 1952 Phys. Rev. 86 308
Google Scholar
[31] Abragam A 1961 The Principles of Nuclear Magnetism (Oxford: Clarendon Press) pp44-46
[32] Xiao Y, Novikova I, Phillips D F, Walsworth R L 2006 Phys. Rev. Lett. 96 043601
Google Scholar
[33] Lucivero V G, McDonough N D, Dural N, Romalis M V 2017 Phys. Rev. A 96 062702
Google Scholar
[34] Smullin S J, Savukov I M, Vasilakis G, Ghosh R K, Romalis M V 2009 Phys. Rev. A 80 033420
Google Scholar
[35] Yu Q Q, Liu S Q, Wang X K, Sheng D 2023 Phys. Rev. A 107 043110
Google Scholar
[36] Mathur B, Tang H, Happer W 1968 Phys. Rev. 171 11
Google Scholar
[37] Liu Y, Peng X, Wang H D, Wang B W, Yi K W, Sheng D, Guo H 2022 Opt. Lett. 47 5252
Google Scholar
[38] Hao C P, Yu Q Q, Yuan C Q, Liu S Q, Sheng D 2021 Phys. Rev. A 103 053523
Google Scholar
计量
- 文章访问数: 189
- PDF下载量: 14
- 被引次数: 0