搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导热光栅光谱测温技术研究

瞿谱波 关小伟 张振荣 王晟 李国华 叶景峰 胡志云

引用本文:
Citation:

激光诱导热光栅光谱测温技术研究

瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云

Laser induced thermal grating spectroscopy thermometry technique

Qu Pu-Bo, Guan Xiao-Wei, Zhang Zhen-Rong, Wang Sheng, Li Guo-Hua, Ye Jing-Feng, Hu Zhi-Yun
PDF
导出引用
  • 报道了激光诱导热光栅光谱测温技术的研究. 通过两束相干交叉的脉冲抽运光, 在NO2/N2混合气中诱导出热光栅, 一束满足布拉格散射条件的连续探测光在交叉区域激励出相干的热光栅信号, 经过空间和光谱滤波的信号光由光电倍增管探测, 并由数字示波器显示和存储. 该信号携带了丰富的流场信息, 通过频域分析, 对气体的温度进行了测量, 热光栅光谱技术测量的温度与热电偶温度符合得很好. 同时还利用热光栅光谱技术进行了气体声速的直接测量, 在一定的温度范围内, 测量结果与理论曲线基本一致, 显示了该技术具有较高的测量精度与多参数同时测量的能力. 对影响信号波形的因素进行了分析, 结果表明, 热光栅光谱测温技术在高压强环境下应用具有独特的优势, 是一种应用前景广阔的激光燃烧诊断技术.
    In this paper the laser induced thermal grating spectroscopy thermometry technique is investigated. Two coherent, pulsed pump lasers are crossed in NO2/N2 mixture to induce an interference pattern, owing to the resonant absorption and the subsequently quenching effect. The heat released into the bulk gas can modulate the local refractive index (temperature grating). Simultaneously, the sound wave induced by the electric field forms the standing wave (acoustic grating). These two effects mentioned above produce a thermal grating, and a continuous probe laser satisfying the Bragg scattering condition, generates a coherent signal in the crossed region. The spatial and spectral filtering signal is detected with a photomultiplier tube, and displayed with a digital oscilloscope. The signal carries plenty of flow field information. The gas temperature is obtained through frequency analysis. In order to increase the precision of temperature measurement, we calibrate the grating spacing at a known temperature in a pressurized gas cell. Then the temperature in a range of 300-500 K is measured by the laser induced thermal grating spectroscopy technique, and the thermocouple temperatures are recorded at the same detecting point simultaneously. Both of them agree well with each other, though some discrepancies are still existent. The difference is explained according to the heat radiation loss. We also use this technique to measure the gas sound speed directly, which is crucial to studying the gas behaviors at high pressures and the interaction between molecules. In a certain temperature range, the measurement result and the theoretical curve are nearly consistent, which shows the high precision and multi-parameter measurement ability of laser induced thermal grating spectroscopy. The factors influencing the signal waveform are analyzed, too, and the results demonstrate that the signal duration, the signal intensity, and the oscillation peaks increase with pressure increasing. As a consequent, the accuracy of measurement can be improved. Also, other gas dynamic parameters, such as the thermal diffusion rate and the heat conductivity, can also be measured by using this technique. The unique advantage of laser induced thermal grating spectroscopy thermometry technique provides us with a powerful diagnostic tool used in high pressure condition.
    • 基金项目: 激光与物质相互作用国家重点实验室基金(批准号:SKLLIM1307)资助的课题.
    • Funds: Project supported by the Foundation of State Key Laboratory of Laser Interaction with Matter of China (Grant No. SKLLIM1307).
    [1]

    Eckbreth A C, Dobbs G M, Stufflebeam J H 1984 Appl. Opt. 23 1328

    [2]

    Kiefer J, Ewart P 2011 Prog. Energy Combust. Sci. 37 525

    [3]

    Ewart P 1985 Opt. Commun. 55 124

    [4]

    Brackmann C, Bood J, Afzelius M, Bengtsson P E 2004 Meas. Sci. Technol. 15 R13

    [5]

    Hanson R K, Seitzman J M, Paul P H 1990 Appl. Phys. B 50 441

    [6]

    Kaiser S A, Child M, Schulz C 2013 Proc. Comb. Inst. 34 2911

    [7]

    Williams B, Edwards M, Stone R, Williams J, Ewart P 2014 Comb. Flame 161 270

    [8]

    Brown M S, Roberts W L 1998 AIAA 98-0235

    [9]

    Cummings E B 1994 Opt. Lett. 19 1361

    [10]

    Latzel H, Dreizler A, Dreier T, Heinze J, Dillmann M, Stricker W, Lloyd G M, Ewart P 1998 Appl. Phys. B 67 667

    [11]

    Stevens R, Ewart P 2006 Opt. Lett. 31 1055

    [12]

    Latzel H, Dreier T 2000 Phys. Chem. Chem. Phys. 2 3819

    [13]

    Hart R C, Balla R J, Herring G C 2000 J. Acoust. Soc. Am. 108 1946

    [14]

    Danehy P M, Paul P H, Farrow R L 1995 J. Opt. Soc. Am. B 12 1564

    [15]

    Cummings E B, Hornung H G, Brown M S, DeBarber P A 1995 Opt. Lett. 20 1577

  • [1]

    Eckbreth A C, Dobbs G M, Stufflebeam J H 1984 Appl. Opt. 23 1328

    [2]

    Kiefer J, Ewart P 2011 Prog. Energy Combust. Sci. 37 525

    [3]

    Ewart P 1985 Opt. Commun. 55 124

    [4]

    Brackmann C, Bood J, Afzelius M, Bengtsson P E 2004 Meas. Sci. Technol. 15 R13

    [5]

    Hanson R K, Seitzman J M, Paul P H 1990 Appl. Phys. B 50 441

    [6]

    Kaiser S A, Child M, Schulz C 2013 Proc. Comb. Inst. 34 2911

    [7]

    Williams B, Edwards M, Stone R, Williams J, Ewart P 2014 Comb. Flame 161 270

    [8]

    Brown M S, Roberts W L 1998 AIAA 98-0235

    [9]

    Cummings E B 1994 Opt. Lett. 19 1361

    [10]

    Latzel H, Dreizler A, Dreier T, Heinze J, Dillmann M, Stricker W, Lloyd G M, Ewart P 1998 Appl. Phys. B 67 667

    [11]

    Stevens R, Ewart P 2006 Opt. Lett. 31 1055

    [12]

    Latzel H, Dreier T 2000 Phys. Chem. Chem. Phys. 2 3819

    [13]

    Hart R C, Balla R J, Herring G C 2000 J. Acoust. Soc. Am. 108 1946

    [14]

    Danehy P M, Paul P H, Farrow R L 1995 J. Opt. Soc. Am. B 12 1564

    [15]

    Cummings E B, Hornung H G, Brown M S, DeBarber P A 1995 Opt. Lett. 20 1577

  • [1] 杨鑫宇, 彭志敏, 丁艳军, 杜艳君. 基于宽带紫外吸收的火焰温度和OH/NH/NO浓度同步测量. 物理学报, 2022, 71(17): 173301. doi: 10.7498/aps.71.20220208
    [2] 田子阳, 赵会杰, 尉昊赟, 李岩. 基于混合飞秒/皮秒相干反斯托克斯拉曼散射的动态高温燃烧场温度测量. 物理学报, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [3] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术. 物理学报, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [4] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性. 物理学报, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [5] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法. 物理学报, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [6] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [7] 赵延霆, 元晋鹏, 姬中华, 李中豪, 孟腾飞, 刘涛, 肖连团, 贾锁堂. 光缔合制备超冷铯分子的温度测量. 物理学报, 2014, 63(19): 193701. doi: 10.7498/aps.63.193701
    [8] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [9] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [10] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究. 物理学报, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [11] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [12] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法. 物理学报, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [13] 黄茜, 张晓丹, 纪伟伟, 王京, 倪牮, 李林娜, 孙建, 耿卫东, 耿新华, 熊绍珍, 赵颖. Al2O3薄膜/纳米Ag颗粒复合结构的光吸收谱及增强Raman散射光谱研究. 物理学报, 2010, 59(4): 2753-2759. doi: 10.7498/aps.59.2753
    [14] 王光昶, 郑志坚, 谷渝秋, 温贤伦, 陈 涛, 张 婷, 张建炜. 超热电子输运背向光辐射的实验研究. 物理学报, 2008, 57(8): 5117-5122. doi: 10.7498/aps.57.5117
    [15] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [16] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量. 物理学报, 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [17] 赵亚丽, 高 帆, 汪壮兵, 明 海, 许小亮. Ag-SiO2复合薄膜形貌和吸收特性的研究. 物理学报, 2007, 56(6): 3564-3569. doi: 10.7498/aps.56.3564
    [18] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [19] 刘向绯, 蒋昌忠, 任 峰, 付 强. Ag离子注入非晶SiO2的光学吸收、拉曼谱和透射电镜研究. 物理学报, 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [20] 吕少哲, 陈宝玖, 黄世华, 王笑军, 陆丽珠, 严懋勋. SrAl12O19∶Pr3+中的热激发. 物理学报, 2003, 52(4): 1009-1012. doi: 10.7498/aps.52.1009
计量
  • 文章访问数:  6678
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-01-29
  • 刊出日期:  2015-06-05

/

返回文章
返回