搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低孔隙度疏松锡的高压声速与相变

宋萍 蔡灵仓 李欣竹 陶天炯 赵信文 王学军 方茂林

引用本文:
Citation:

低孔隙度疏松锡的高压声速与相变

宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林

Sound velocity and phase transition for low porosity tin at high pressure

Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin
PDF
导出引用
  • 为研究微孔洞对锡的高压相变的影响, 对含亚微米孔洞的疏松锡(疏松度m=1.01)进行了冲击加载-卸载实验. 利用DPS(Doppler pins system)测得了31.8-66.1 GPa冲击压力下疏松锡/LiF界面粒子的速度剖面, 获得了各压力下的纵波声速与体波声速, 给出了该疏松锡的冲击熔化起始压力约为49.1 GPa, 获得了各压力下的剪切模量与泊松比. 结合密实锡与疏松锡的高压纵波声速、体波声速与剪切模量, 界定密实锡的冲击熔化压力在53.5-62.3 GPa之间, 高于疏松锡的值, 表明微孔洞明显降低了冲击熔化压力. 对密实锡准确的冲击熔化压力值还需要进一步的实验数据. 测试的固态压力范围内的声速数据没有明显奇异点, 表明疏松锡没有类似密实锡的固态bcc 相变发生.
    Shock and release experiments are performed on the porous Sn with sub-micropores with porosity m=1.01. Time-resolved interfacial velocities between the porous Sn and LiF window are measured with Doppler pins system under seven pressure points from 31.8 GPa to 66.1 GPa. From the interfacial velocity, the Euler longitudinal sound velocities and the bulk sound velocities are obtained. The corresponding Poisson ratio and shear modulus are determined, too. From the transition of longitudinal sound velocity to bulk sound velocity at high pressures, the shock-induced melting of Sn with porosity 1.01 occurs at about 49.1 GPa. With the Euler longitudinal sound velocities, the bulk sound velocities and the shear moduluses of porous and dense Sn, the melting pressure zone of dense Sn can be determined to be between 53.5 GPa and 62.3 GPa. Comparing the melting zone of porous Sn and that of dense Sn, micropores in the material reduce the the shock melting pressure obviously. The Exact shock melting pressure of dense Sn needs further experimental data in the corresponding pressure zone. From the longitudinal velocity of porous Sn in the measured solid zone, no bcc phase transition takes place for this material. This may relate with the micropores in the material or the difference in material component, which needs further investigating.
    • 基金项目: 中国工程物理研究院科学技术发展基金(批准号: 2013B0101004)资助的课题.
    • Funds: Project supported by Science and Technology Development Fundation of Chinese Academy of Engineering Physics, China (Grant No. 2013B0101004).
    [1]

    Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104

    [2]

    Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011

    [3]

    Burakovsky L, Preston D L, Silbar R R 2000 J. Appl. Phys. 88 6294

    [4]

    Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103

    [5]

    Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841

    [6]

    Agrawal P M 2003 J. Chem. Phys. 118 9680

    [7]

    Keifer B, Duffy T S, Uchida T 2002 APS User Activity Report

    [8]

    Schwager B, Ross M, Stefanie Japel, Reinhard Boehler 2010 J. Chem. Phys. 133 084501

    [9]

    Weir S T, Lipp M J, Falabella S 2012 J. Appl. Phys. 111 123529

    [10]

    Hereil P L, Mabire C 2000 J. Phys. IV (France) 10 Pr9-799-Pr9-804

    [11]

    Hu J B, Zhou X M, Dai C D 2008 J. Appl. Phys. 104 083520

    [12]

    Zhernokletov M V, Kovalev A E, Komissarov V V, Zocher M A, Cherne F J 2012 Combust. Expl. Shock+ 48 112

    [13]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Hunan: National University of Defence Technology Press) p517 (in Chinese) [汤文辉, 张若棋 1999 物态方程理论及计算概论 (湖南: 国防科技大学出版社) 第517 页]

    [14]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社)第191页]

    [15]

    Asay J R, Chhabildas L C 1981 in Meyers M A, Murr L E ed: Shock Waves and High-Strain-Rate Phenomena in Metals (New York: Plenum) p417

    [16]

    Servas E M 2001 in Furnish M D, Thadhani N N, Horie Y ed: Shock Compression of Condensed Matter (New York: AIP 2002) p1200

  • [1]

    Erhart P, Bringa E M, Kumar M 2005 Phys. Rev. B 72 052104

    [2]

    Burakovsky L, Preston D L, Silbar R R 1999 Phys. Rev. B 61 15011

    [3]

    Burakovsky L, Preston D L, Silbar R R 2000 J. Appl. Phys. 88 6294

    [4]

    Gomez L, Dobry A, Diep H T 2001 Phys. Rev. B 63 224103

    [5]

    Lutsko J F, Wolf D, Phillpot S R 1989 Phys. Rev. B 40 2841

    [6]

    Agrawal P M 2003 J. Chem. Phys. 118 9680

    [7]

    Keifer B, Duffy T S, Uchida T 2002 APS User Activity Report

    [8]

    Schwager B, Ross M, Stefanie Japel, Reinhard Boehler 2010 J. Chem. Phys. 133 084501

    [9]

    Weir S T, Lipp M J, Falabella S 2012 J. Appl. Phys. 111 123529

    [10]

    Hereil P L, Mabire C 2000 J. Phys. IV (France) 10 Pr9-799-Pr9-804

    [11]

    Hu J B, Zhou X M, Dai C D 2008 J. Appl. Phys. 104 083520

    [12]

    Zhernokletov M V, Kovalev A E, Komissarov V V, Zocher M A, Cherne F J 2012 Combust. Expl. Shock+ 48 112

    [13]

    Tang W H, Zhang R Q 1999 Equation of State Theory and Calculation Conspectus (Hunan: National University of Defence Technology Press) p517 (in Chinese) [汤文辉, 张若棋 1999 物态方程理论及计算概论 (湖南: 国防科技大学出版社) 第517 页]

    [14]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p191 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社)第191页]

    [15]

    Asay J R, Chhabildas L C 1981 in Meyers M A, Murr L E ed: Shock Waves and High-Strain-Rate Phenomena in Metals (New York: Plenum) p417

    [16]

    Servas E M 2001 in Furnish M D, Thadhani N N, Horie Y ed: Shock Compression of Condensed Matter (New York: AIP 2002) p1200

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [3] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟. 物理学报, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [4] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性. 物理学报, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 任国武, 张世文, 范诚, 陈永涛. 预应力对多晶铁冲击行为影响的微观模拟研究. 物理学报, 2016, 65(19): 196203. doi: 10.7498/aps.65.196203
    [7] 潘昊, 吴子辉, 胡晓棉. 非对称冲击-卸载实验中纵波声速的特征线分析方法. 物理学报, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [8] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [9] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [10] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [11] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [12] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法. 物理学报, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [13] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应. 物理学报, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [14] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [15] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [16] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [17] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
计量
  • 文章访问数:  5687
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-12-01
  • 刊出日期:  2015-05-05

/

返回文章
返回