搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称冲击-卸载实验中纵波声速的特征线分析方法

潘昊 吴子辉 胡晓棉

引用本文:
Citation:

非对称冲击-卸载实验中纵波声速的特征线分析方法

潘昊, 吴子辉, 胡晓棉

Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment

Pan Hao, Wu Zi-Hui, Hu Xiao-Mian
PDF
导出引用
  • 材料高压声速是获取材料在冲击下的剪切模量、强度和相变信息的重要物理量, 对于研究材料在高速冲击下的行为非常重要. 由于飞片、样品和窗口材料阻抗失配等因素, 传统的声速分析方法无法对非对称冲击-卸载实验中单样品的窗口界面速度进行准确的分析. 本文在反向特征线方法的基础上, 考虑了飞片与样品、样品和窗口界面的相互作用, 建立了适合于仅含单一厚度样品的非对称冲击-卸载实验的特征线声速分析方法, 通过对数值实验给出的速度剖面的分析表明, 该方法能够较为准确地获得待测材料高压下的声速及卸载路径.
    Sound speed is of great importance for high velocity impact phenomena because it is a fundamental parameter to deduce the shear moduli, strengths and phase transitions of materials at high pressure. It has attracted much attention because of significant challenges to experiment and simulation. In practice, with the development of laser interferometer measurement system, one can obtain velocity-time histories of windowed-surfaces or free surfaces with high resolution in shock or ramp compression and unload experiments. This development provides a possible way to infer the sound speed from these velocity profiles. The key problem is to build valid analysis technique to extract the sound speed. Commonly used Lagrangian analysis methods include backward integration method, incremental impedance matching method, transfer function method and backward characteristic analysis method. However, all of these methods hardly infer the right results from the nonsymmetric impact and release experiment with only one depth of material due to the complex impedance mismatch among a flyer, sample and window. Some decreasing impedance mismatch techniques have been developed for the experiments including reverse impact or using a high strength flyer, but these techniques will limit the pressure range or need a newly designed gun with large caliber. In fact, the traditional backward characteristic analysis method only considers the sample/window interaction while bending of the incoming characteristics due to impedance difference between the flyer and sample is always ignored, which causes a distortion to the loading condition of samples. Thus in this work, we add forward characteristics to describe rarefaction wave reflection at the flyer/sample interface. Then a reasonable loading-releasing in-situ velocity profile of the interface can be derived from this improvement. We use the improved/tradition characteristics and incremental impedance matching method to analyze a synthetic nonsymmetric impact experiment in which the flyer, sample and window are of Al, Cu and LiF, respectively. Synthetic analyses suggest that the modified characteristic method can give more accurate results including sound speed-particle velocity and release path at high pressure. Compared with other methods, the new characteristic method just needs to know the release path of flyer and window that can be calibrated by well-developed technique, moreover, this method also does not need to know the form of equation of state and constitutive model of the sample. Calculation of this method is not complex and the iterative approach usually achieves convergence in less than 10 steps. All of these features will facilitate using this method to infer sound speed from the velocity profile of nonsymmetric impact experiments.
      通信作者: 胡晓棉, hu_xiaomian@iapcm.ac.cn
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    [1]

    Asay J R, Kerley G I 1987 Int. J. Impact Eng. 5 69

    [2]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202 (in Chinese) [俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202]

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Huang H, Asay J R 2005 J. Appl. Phys. 98 033524

    [5]

    Furnish M D, Alexander C S, Brown J L, Reinhart W D 2014 J. Appl. Phys. 115 033511

    [6]

    Tan Y, Yu Y Y, Dai C D, Yu J D, Wang Q S, Tan H 2013 Acta Phys. Sin. 62 036401 (in Chinese) [谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华 2013 物理学报 62 036401]

    [7]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401]

    [8]

    Asay J R, Lipkin J 1978 J. Appl. Phys. 49 4242

    [9]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [10]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D 38 733

    [11]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Ding J L 2013 J. Appl. Phys. 114 223518

    [12]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H, Belof J L 2014 J. Appl. Phys. 115 043530

    [13]

    Rothman S, Edwards R, Vogle, T J, Furnish M D 2012 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, United States, June 26-July 1, 2011 p104

    [14]

    Pan H, Hu X M, Wu Z H 2015 EPJ Web Conf. 94 01007

    [15]

    Lowe M R, Rothman S D, Chapman D, Robinson C 2014 J. Phys. Conf. Series 500 112043

    [16]

    Rothman S D, Davis J P, Gooding S, Knudson M D, Ao T 2014 J. Phys. Conf. Series 500 032016

    [17]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p160 (in Chinese) [谭华 2006 实验冲击波物理导引(北京:国防工业出版社) 第160页]

    [18]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [19]

    Casem D T, Dandekar D P 2012 J. Appl. Phys. 111 063508

    [20]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defense Industry Press) p98, p215 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京:国防工业出版社) 第 98, 215 页]

    [21]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [22]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

  • [1]

    Asay J R, Kerley G I 1987 Int. J. Impact Eng. 5 69

    [2]

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202 (in Chinese) [俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202]

    [3]

    Hu J B, Zhou X M, Tan H, Li J B, Dai C D 2008 Appl. Phys. Lett. 92 111905

    [4]

    Huang H, Asay J R 2005 J. Appl. Phys. 98 033524

    [5]

    Furnish M D, Alexander C S, Brown J L, Reinhart W D 2014 J. Appl. Phys. 115 033511

    [6]

    Tan Y, Yu Y Y, Dai C D, Yu J D, Wang Q S, Tan H 2013 Acta Phys. Sin. 62 036401 (in Chinese) [谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华 2013 物理学报 62 036401]

    [7]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401]

    [8]

    Asay J R, Lipkin J 1978 J. Appl. Phys. 49 4242

    [9]

    Hayes D B, Hall C A, Asay J R, Knudson M D 2004 J. Appl. Phys. 96 5520

    [10]

    Rothman S D, Davis J P, Maw J, Robinson C M, Parker K, Palmer J 2005 J. Phys. D 38 733

    [11]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Ding J L 2013 J. Appl. Phys. 114 223518

    [12]

    Brown J L, Alexander C S, Asay J R, Vogler T J, Dolan D H, Belof J L 2014 J. Appl. Phys. 115 043530

    [13]

    Rothman S, Edwards R, Vogle, T J, Furnish M D 2012 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter Chicago, United States, June 26-July 1, 2011 p104

    [14]

    Pan H, Hu X M, Wu Z H 2015 EPJ Web Conf. 94 01007

    [15]

    Lowe M R, Rothman S D, Chapman D, Robinson C 2014 J. Phys. Conf. Series 500 112043

    [16]

    Rothman S D, Davis J P, Gooding S, Knudson M D, Ao T 2014 J. Phys. Conf. Series 500 032016

    [17]

    Tan H 2006 Introduction to Experimental Shock-Wave Physics (Beijing: National Defense Industry Press) p160 (in Chinese) [谭华 2006 实验冲击波物理导引(北京:国防工业出版社) 第160页]

    [18]

    Duffy T S, Ahrens T J 1995 J. Geophys. Res. 100 529

    [19]

    Casem D T, Dandekar D P 2012 J. Appl. Phys. 111 063508

    [20]

    Li W X 2003 One-Dimensional Nonsteady Flow and Shock Waves (Beijing: National Defense Industry Press) p98, p215 (in Chinese) [李维新 2003 一维不定常流与冲击波(北京:国防工业出版社) 第 98, 215 页]

    [21]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [22]

    Fratanduono D E, Boehly T R, Barrios M A, Meyerhofer D D, Eggert J H, Smith R F, Hicks D G, Celliers P M, Braun D G, Collins G W 2011 J. Appl. Phys. 109 123521

  • [1] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [2] 潘昊, 王升涛, 吴子辉, 胡晓棉. 孪晶对Be材料冲击加-卸载动力学影响的数值模拟研究. 物理学报, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [3] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性. 物理学报, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [4] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 瞿谱波, 关小伟, 张振荣, 王晟, 李国华, 叶景峰, 胡志云. 激光诱导热光栅光谱测温技术研究. 物理学报, 2015, 64(12): 123301. doi: 10.7498/aps.64.123301
    [7] 宋萍, 蔡灵仓, 李欣竹, 陶天炯, 赵信文, 王学军, 方茂林. 低孔隙度疏松锡的高压声速与相变. 物理学报, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [8] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [9] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [10] 王勇, 林书玉, 张小丽. 声波在含气泡液体中的线性传播. 物理学报, 2013, 62(6): 064304. doi: 10.7498/aps.62.064304
    [11] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [12] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [13] 王新峰, 熊显潮, 高敏忠. 超声波流量计测量流体声速的实验方法. 物理学报, 2011, 60(11): 114303. doi: 10.7498/aps.60.114303
    [14] 宋萍, 王青松, 戴诚达, 蔡灵仓, 张毅, 翁继东. 低孔隙度疏松铝的高压声速与冲击熔化. 物理学报, 2011, 60(4): 046201. doi: 10.7498/aps.60.046201
    [15] 邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦. 冲击加载下孔洞贯通的微观机理研究. 物理学报, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [16] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法. 物理学报, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [17] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性. 物理学报, 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [18] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [19] 陈 军, 徐 云, 陈栋泉, 孙锦山. 冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究. 物理学报, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [20] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
计量
  • 文章访问数:  5107
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-03-16
  • 刊出日期:  2016-06-05

/

返回文章
返回