搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶石墨烯拉伸断裂行为的分子动力学模拟

何欣 白清顺 白锦轩

引用本文:
Citation:

多晶石墨烯拉伸断裂行为的分子动力学模拟

何欣, 白清顺, 白锦轩

Molecular dynamics study of the tensile mechanical properties of polycrystalline graphene

He Xin, Bai Qing-Shun, Bai Jin-Xuan
PDF
导出引用
  • 采用分子动力学模拟方法研究了不同晶界对石墨烯拉伸力学特性及断裂行为的影响. 定义了表征晶界能量特性的新参量缺陷能, 并以此为基础分析了晶界结构的能量特性. 探讨了晶界对弹性模量和强度极限等的影响以及强度对晶界能量特性的依赖关系. 结果表明: 晶界能量特性可以间接反映晶界强度; 同时, 晶界中缺陷会使实际承载碳键数量小于名义承载碳键数, 从而在较大范围内影响弹性模量. 分析了不同晶界的断裂过程, 发现了裂纹扩展方向的强度依赖性: 低强度晶界主要是以碳键直接断裂为主要方式的沿晶断裂, 而高强度晶界通常是碳键直接断裂和Stone-Wales翻转过程交替进行下的穿晶断裂. 研究结果可为石墨烯器件的设计制造提供理论指导.
    Grain boundaries (GBs) are known to have an important influence on material properties, so understanding how GBs in graphene change its physical properties is important both scientifically and technologically. In this paper, we perform a series of molecular dynamics simulations to investigate the energies, mechanical properties and fracture process of 29 graphene GBs (symmetric and nonsymmetric) under tensile strains. With different arrangements of the pentagonal and heptagonal rings, the misorientation angle () ranges from 3.5 to 27.8. The GBs defects in graphene can produce a pre-strain that will lead to an increase of the energy of GBs. We study the atomic energy distribution around GBs and define a new parameter: single defect energy (Esingle) to calculate the average energy per GBs defect. It is found that Esingle shows a clear linear relation between and defect density (), because pre-strain filed can be cancelled out locally with the increase of defect density. And this pre-stain can reduce the strength of the C-C bond contained in GBs defects. Hence, with very few exceptions, mechanical failure always starts from the defective region. Furthermore, the energy of GBs can be used to reflect the strength of GBs indirectly. The simulated results show that the tensile strength of GBs is linearly related to the highest atomic energy (Emax), and it also depends on Esingle monotonically. Owing to the pre-strain, load distribution along GBs is uneven. Because some bonds are stretched while others are compressed, that is, the real number of bearing carbon bonds is less than the nominal number. Therefore, at the beginning of tension, the Young's modulus of polycrystalline graphene is significantly lower than that of the monocrystal one. But with the increase of strain, it becomes comparable to that of the monocrystal graphene at sufficiently large strain. The results of fracture process indicate that formation and propagation of crack are both dependent on strength GBs. For low GB strength, the fracture mechanism is transgranular fracture in the form of direct fracture of C-C bonds. When stress reaches a critical value, the weakest C-C bonds in GBs will breakdown and form a fracture site. Because of the uneven bearing condition, the C-C bonds in front of the crack possess considerable residual strength and could prevent crack from propagating. As a result, many other fracture sites in the GBs defect can be produced with the increase of strain, and finally, these sites emerge gradually along GBs and form a sawtooth crack. In contrast, the fracture process of high strength GBs is always accompanied with the variations of Stone-Wales (S-W) transformation and direct fracture of C-C bonds. Once the fracture site forms, the crack will propagate rapidly predominantly along armchair or zigzag direction and finally could cross GBs, this process can be called intergranular fracture. Our present work provides fundamental guidance for understanding how defects affect the mechanical behaviour, which is important for further research and application of graphene devices.
      通信作者: 何欣, x.he@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51535003, 51575138)资助的课题.
      Corresponding author: He Xin, x.he@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51535003, 51575138).
    [1]

    Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'homme R K, Brinson L C 2008 Nat. Nanotechnol. 3 327

    [2]

    Miao T, Yeom S, Wang P, Standley B, Bockrath M 2014 Nano Lett. 14 2982

    [3]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 57701

    [4]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [5]

    Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J, Gao H J 2014 Chin. Phys. B 23 096803

    [6]

    Zhang T, Li X, Gao H 2015 Int. J. Fract. 196 1

    [7]

    Yazyev O V, Louie S G 2010 Phys. Rev. B 81 195420

    [8]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389

    [9]

    An J, Voelkl E, Suk J W, Li X, Magnuson C W, Fu L, Tiemeijer P, Bischoff M, Freitag B, Popova E, Ruoff R S 2011 ACS Nano 5 2433

    [10]

    Wang M C, Yan C, Ma L, Hu N, Chen M W 2012 Comput. Mater. Sci. 54 236

    [11]

    Xiao J R, Staniszewski J, Gillespie J W 2010 Mater. Sci. Eng. A 527 715

    [12]

    Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J 2013 Science 340 1073

    [13]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [14]

    Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M 2012 Nat. Mater. 11 759

    [15]

    Wu J, Wei Y 2013 J. Mech. Phys. Solids 61 1421

    [16]

    Yi L, Yin Z, Zhang Y, Chang T 2013 Carbon 51 373

    [17]

    Liu T H, Pao C W, Chang C C 2012 Carbon 50 3465

    [18]

    Rasool H I, Ophus C, Klug W S, Zettl A, Gimzewski J K 2013 Nat. Commun. 4 2811

    [19]

    Cao A, Yuan Y 2012 Appl. Phys. Lett. 100 211912

    [20]

    Han J, Ryu S, Sohn D, Im S 2014 Carbon 68 250

    [21]

    Zhang J, Zhao J, Lu J 2012 ACS Nano 6 2704

    [22]

    Kotakoski J, Meyer J C 2012 Phys. Rev. B 85 195447

    [23]

    Zhang T, Li X, Kadkhodaei S, Gao H 2012 Nano Lett. 12 4605

    [24]

    Ansari R, Ajori S, Motevalli B 2012 Superlattices Microstruct. 51 274

    [25]

    Jhon Y I, Zhu S E, Ahn J H, Jhon M S 2012 Carbon 50 3708

    [26]

    Kim K, Artyukhov V I, Regan W, Liu Y, Crommie M F, Yakobson B I, Zettl A 2012 Nano Lett. 12 293

    [27]

    Ruiz-Vargas C S, Zhuang H L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J 2011 Nano Lett. 11 2259

    [28]

    Wang B, Puzyrev Y, Pantelides S T 2011 Carbon 49 3983

    [29]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta. Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207]

    [30]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783

    [31]

    Ni Z, Bu H, Zou M, Yi H, Bi K, Chen Y 2010 Phys. B: Condens. Matter 405 1301

    [32]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [33]

    Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120

    [34]

    Xiang L, Wu J, Ma S Y, Wang F, Zhang K W 2015 Chin. Phys. Lett. 32 096801

    [35]

    Liu Y, Yakobson B I 2010 Nano Lett. 10 2178

    [36]

    Chen S, Chrzan D C 2011 Phys. Rev. B 84 214103

    [37]

    Yazyev O V, Louie S G 2010 Phys. Rev. B 81 195420

    [38]

    Li L, Reich S, Robertson J 2005 Phys. Rev. B 72 184109

    [39]

    Frank O, Tsoukleri G, Riaz I, Papagelis K, Parthenios J, Ferrari A C, Geim A K, Novoselov K S, Galiotis C 2011 Nat Commun. 2 255

    [40]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 147 336

  • [1]

    Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud'homme R K, Brinson L C 2008 Nat. Nanotechnol. 3 327

    [2]

    Miao T, Yeom S, Wang P, Standley B, Bockrath M 2014 Nano Lett. 14 2982

    [3]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 57701

    [4]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [5]

    Yang H, Shen C M, Tian Y, Wang G Q, Lin S X, Zhang Y, Gu C Z, Li J J, Gao H J 2014 Chin. Phys. B 23 096803

    [6]

    Zhang T, Li X, Gao H 2015 Int. J. Fract. 196 1

    [7]

    Yazyev O V, Louie S G 2010 Phys. Rev. B 81 195420

    [8]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A 2011 Nature 469 389

    [9]

    An J, Voelkl E, Suk J W, Li X, Magnuson C W, Fu L, Tiemeijer P, Bischoff M, Freitag B, Popova E, Ruoff R S 2011 ACS Nano 5 2433

    [10]

    Wang M C, Yan C, Ma L, Hu N, Chen M W 2012 Comput. Mater. Sci. 54 236

    [11]

    Xiao J R, Staniszewski J, Gillespie J W 2010 Mater. Sci. Eng. A 527 715

    [12]

    Lee G H, Cooper R C, An S J, Lee S, van der Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J 2013 Science 340 1073

    [13]

    Grantab R, Shenoy V B, Ruoff R S 2010 Science 330 946

    [14]

    Wei Y, Wu J, Yin H, Shi X, Yang R, Dresselhaus M 2012 Nat. Mater. 11 759

    [15]

    Wu J, Wei Y 2013 J. Mech. Phys. Solids 61 1421

    [16]

    Yi L, Yin Z, Zhang Y, Chang T 2013 Carbon 51 373

    [17]

    Liu T H, Pao C W, Chang C C 2012 Carbon 50 3465

    [18]

    Rasool H I, Ophus C, Klug W S, Zettl A, Gimzewski J K 2013 Nat. Commun. 4 2811

    [19]

    Cao A, Yuan Y 2012 Appl. Phys. Lett. 100 211912

    [20]

    Han J, Ryu S, Sohn D, Im S 2014 Carbon 68 250

    [21]

    Zhang J, Zhao J, Lu J 2012 ACS Nano 6 2704

    [22]

    Kotakoski J, Meyer J C 2012 Phys. Rev. B 85 195447

    [23]

    Zhang T, Li X, Kadkhodaei S, Gao H 2012 Nano Lett. 12 4605

    [24]

    Ansari R, Ajori S, Motevalli B 2012 Superlattices Microstruct. 51 274

    [25]

    Jhon Y I, Zhu S E, Ahn J H, Jhon M S 2012 Carbon 50 3708

    [26]

    Kim K, Artyukhov V I, Regan W, Liu Y, Crommie M F, Yakobson B I, Zettl A 2012 Nano Lett. 12 293

    [27]

    Ruiz-Vargas C S, Zhuang H L, Huang P Y, van der Zande A M, Garg S, McEuen P L, Muller D A, Hennig R G, Park J 2011 Nano Lett. 11 2259

    [28]

    Wang B, Puzyrev Y, Pantelides S T 2011 Carbon 49 3983

    [29]

    Wang W D, Hao Y, Ji X, Yi C L, Niu X Y 2012 Acta. Phys. Sin. 61 200207 (in Chinese) [王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇 2012 物理学报 61 200207]

    [30]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Matter 14 783

    [31]

    Ni Z, Bu H, Zou M, Yi H, Bi K, Chen Y 2010 Phys. B: Condens. Matter 405 1301

    [32]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385

    [33]

    Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120

    [34]

    Xiang L, Wu J, Ma S Y, Wang F, Zhang K W 2015 Chin. Phys. Lett. 32 096801

    [35]

    Liu Y, Yakobson B I 2010 Nano Lett. 10 2178

    [36]

    Chen S, Chrzan D C 2011 Phys. Rev. B 84 214103

    [37]

    Yazyev O V, Louie S G 2010 Phys. Rev. B 81 195420

    [38]

    Li L, Reich S, Robertson J 2005 Phys. Rev. B 72 184109

    [39]

    Frank O, Tsoukleri G, Riaz I, Papagelis K, Parthenios J, Ferrari A C, Geim A K, Novoselov K S, Galiotis C 2011 Nat Commun. 2 255

    [40]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 147 336

  • [1] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究. 物理学报, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [2] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [3] 孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良. 单分子器件的拉伸与断裂过程第一性原理研究: 末端基团效应. 物理学报, 2019, 68(17): 178502. doi: 10.7498/aps.68.20190693
    [4] 许易, 许小言, 张薇, 欧阳滔, 唐超. 多晶石墨烯纳米带热电性能的理论研究. 物理学报, 2019, 68(24): 247202. doi: 10.7498/aps.68.20191276
    [5] 施佳妤, 蓝尤钊. 类石墨烯结构二维层状碳化硅的非线性二次谐波特性的第一性原理研究. 物理学报, 2018, 67(21): 217803. doi: 10.7498/aps.67.20181337
    [6] 邹诗莹, 席伟成, 彭妙娟, 程玉民. 运用改进的无单元Galerkin方法分析机场道面断裂力学问题. 物理学报, 2017, 66(12): 120204. doi: 10.7498/aps.66.120204
    [7] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [8] 袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌. 多晶银纳米线拉伸变形的分子动力学模拟研究. 物理学报, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [9] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [10] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟. 物理学报, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [11] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [12] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [13] 彭德锋, 江五贵, 彭川. 碳纳米管从硅基板上剥离的拉伸分子动力学模拟研究. 物理学报, 2012, 61(14): 146102. doi: 10.7498/aps.61.146102
    [14] 韦勇, 童国平. 拉伸作用对单层石墨片电子能隙的影响. 物理学报, 2009, 58(3): 1931-1935. doi: 10.7498/aps.58.1931
    [15] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究. 物理学报, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [16] 王志明, 徐庆宇, 张世远, 邢定钰, 都有为. 单晶石墨、多晶石墨电导行为的差异. 物理学报, 2007, 56(6): 3464-3467. doi: 10.7498/aps.56.3464
    [17] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [18] 李树忱, 程玉民, 李术才. 动态断裂力学的无网格流形方法. 物理学报, 2006, 55(9): 4760-4766. doi: 10.7498/aps.55.4760
    [19] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [20] 朱 波, 蔡 珣, 王成国, 蔡华甦. 声发射特性与材料断裂韧性相关性研究. 物理学报, 2003, 52(8): 1960-1964. doi: 10.7498/aps.52.1960
计量
  • 文章访问数:  3563
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-03-13
  • 刊出日期:  2016-06-05

多晶石墨烯拉伸断裂行为的分子动力学模拟

  • 1. 哈尔滨工业大学机电工程学院, 哈尔滨 150001
  • 通信作者: 何欣, x.he@hit.edu.cn
    基金项目: 国家自然科学基金(批准号: 51535003, 51575138)资助的课题.

摘要: 采用分子动力学模拟方法研究了不同晶界对石墨烯拉伸力学特性及断裂行为的影响. 定义了表征晶界能量特性的新参量缺陷能, 并以此为基础分析了晶界结构的能量特性. 探讨了晶界对弹性模量和强度极限等的影响以及强度对晶界能量特性的依赖关系. 结果表明: 晶界能量特性可以间接反映晶界强度; 同时, 晶界中缺陷会使实际承载碳键数量小于名义承载碳键数, 从而在较大范围内影响弹性模量. 分析了不同晶界的断裂过程, 发现了裂纹扩展方向的强度依赖性: 低强度晶界主要是以碳键直接断裂为主要方式的沿晶断裂, 而高强度晶界通常是碳键直接断裂和Stone-Wales翻转过程交替进行下的穿晶断裂. 研究结果可为石墨烯器件的设计制造提供理论指导.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回