搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类石墨烯结构二维层状碳化硅的非线性二次谐波特性的第一性原理研究

施佳妤 蓝尤钊

引用本文:
Citation:

类石墨烯结构二维层状碳化硅的非线性二次谐波特性的第一性原理研究

施佳妤, 蓝尤钊

First-principles study of stacking effect on second harmonic generation of graphene-like two-dimensional silicon carbide

Shi Jia-Yu, Lan You-Zhao
PDF
导出引用
  • 二维层状碳化硅(two-dimensional layered silicon carbide,2d-SiC)是一种类石墨烯结构的半导体,在非线性光学频率转换上具有潜在的应用.本文基于第一性原理高精度全电子势线性缀加平面波结合态求和方法研究了层叠和拉伸下类石墨烯2d-SiC结构的非线性二次谐波系数.非线性过程物理源分析表明,三带项构成的单粒子跃迁过程是2d-SiC结构的二次谐波过程的主要微观跃迁机制,电子的带间运动显著受到带内运动的调谐,π电子离域带对非线性过程有重要贡献.理论上给出了2d-SiC结构的二次谐波系数的角度依赖,为实验研究提供理论参考.拉伸可导致不同频率的二次谐波增强.
    Two-dimensional layered silicon carbide (2d-SiC), a semiconductor with graphene-like structure, has potential applications in nonlinear optical frequency conversion. The effect of stacking and strain on the nonlinear second harmonic generation (SHG) coefficient are studied by using the first-principles calculation of the all-electron full-potential linearized augmented-plane wave combined with the sum-over-states method. The analysis of physical origin of the SHG process shows that the single-particle transition channel formed by three bands dominates the SHG process of 2d-SiC. The interband motion of electrons is significantly tuned by the intraband motion. The angle dependence of the SHG coefficient of 2d-SiC is given as a reference for future experiments. A tunable SHG enhancement could be obtained by straining 2d-SiC.
      通信作者: 蓝尤钊, lyzhao@zjnu.cn
    • 基金项目: 国家自然科学基金(批准号:21303164)资助的课题.
      Corresponding author: Lan You-Zhao, lyzhao@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21303164).
    [1]

    Attaccalite C, Nguer A, Cannuccia E, Gruning M 2015 Phys. Chem. Chem. Phys. 17 9533

    [2]

    Li P, Zhou R, Zeng X C 2014 Nanoscale 6 11685

    [3]

    Lin S S 2012 J. Phys. Chem. C 116 3951

    [4]

    Lin X, Lin S, Xu Y, Chen H 2015 J. Mater. Chem. C 3 9057

    [5]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131

    [6]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802

    [7]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [8]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433

    [9]

    Houmad M, Zaari H, Benyoussef A, Kenz A E, Ez-Zahraouy H 2015 Carbon 94 1021

    [10]

    Hsueh H C, Guo G Y, Louie S G 2011 Phys. Rev. B 84 085404

    [11]

    Lu T Y, Liao X X, Wang H Q, Zheng J C 2012 J. Mater. Chem. 22 10062

    [12]

    Wu I J, Guo G Y 2007 Phys. Rev. B 76 035343

    [13]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305

    [14]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [15]

    Wu I J, Guo G Y 2008 Phys. Rev. B 78 035447

    [16]

    Kaplan D, Swaminathan V, Recine G, Balu R, Karna S 2013 J. Appl. Phys. 113 183701

    [17]

    Pan L, Liu H J, Wen Y W, Tan X J, Lv H Y, Shi J, Tang X F 2011 Phys. Lett. A 375 614

    [18]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [19]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401

    [20]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [21]

    Aversa C, Sipe J E 1995 Phys. Rev. B 52 14636

    [22]

    Sipe J E, Ghahramani E 1993 Phys. Rev. B 48 11705

    [23]

    Dadsetani M, Omidi A R 2015 J. Phys. Chem. C 119 16263

    [24]

    Hughes J L P, Sipe J E 1996 Phys. Rev. B 53 10751

    [25]

    Rashkeev S N, Lambrecht W R L, Segall B 1998 Phys. Rev. B 57 3905

    [26]

    Sharma S, Ambrosch-Draxl C 2004 Phys. Scr. 2004 128

    [27]

    Sharma S, Dewhurst J K, Ambrosch-Draxl C 2003 Phys. Rev. B 67 165332

    [28]

    Wang C Y, Guo G Y 2015 J. Phys. Chem. C 119 13268

    [29]

    Boyd R W 2003 Nonlinear Optics (2nd Ed.) (San Diego: Academic Press)

    [30]

    Ye P X 2007 Nonlinear Optical Physics (1st Ed.) (Bejing: Bejing University Press) p31 (in Chinese)[叶佩弦 2007 非线性光学物理 (第1版) (北京: 北京大学出版社) 第31页]

    [31]

    Guo G Y, Lin J C 2008 Phys. Rev. B 77 049901

    [32]

    Guo G Y, Lin J C 2005 Phys. Rev. B 72 075416

    [33]

    Lan Y Z 2017 Comput. Mat. Sci. 138 213

    [34]

    Gao C, Qiu S J, Du W S, Hou C Q, Guo H Y, Yang Z F 2011 Acta Phys. Sin. 60 044211 (in Chinese)[高潮, 邱少君, 杜渭松, 侯超奇, 郭红艳, 杨钊飞 2011 物理学报 60 044211]

    [35]

    Huang X M, Tao L M, Guo Y H, Gao Y, Wang C K 2007 Acta Phys. Sin. 56 2570 (in Chinese)[黄晓明, 陶丽敏, 郭雅慧, 高云, 王传奎 2007 物理学报 56 2570]

    [36]

    Lan Y Z 2018 Comput. Mat. Sci. 151 231

    [37]

    Aspnes D E 1972 Phys. Rev. B 6 4648

    [38]

    Kumar N, Najmaei S, Cui Q, Ceballos F, Ajayan P M, Lou J, Zhao H 2013 Phys. Rev. B 87 161403

    [39]

    Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R, Heinz T F 2013 Nano Lett. 13 3329

    [40]

    Malard L M, Alencar T V, Barboza A P M, Mak K F, de Paula A M 2013 Phys. Rev. B 87 201401

    [41]

    Wang H, Qian X 2017 Nano Lett. 17 5027

    [42]

    Grning M, Attaccalite C 2014 Phys. Rev. B 89 081102

    [43]

    Grning M, Attaccalite C 2014 Phys. Rev. B 90 199901

    [44]

    Tao L, Long H, Zhou B, Yu S F, Lau S P, Chai Y, Fung K H, Tsang Y H, Yao J, Xu D 2014 Nanoscale 6 9713

    [45]

    Woodward R I, Murray R T, Phelan C F, de Oliveira R E P, Runcorn T H, Kelleher E J R, Li S, de Oliveira E C, Fechine G J M, Eda G, de Matos C J S 2017 2D Mater. 4 011006

  • [1]

    Attaccalite C, Nguer A, Cannuccia E, Gruning M 2015 Phys. Chem. Chem. Phys. 17 9533

    [2]

    Li P, Zhou R, Zeng X C 2014 Nanoscale 6 11685

    [3]

    Lin S S 2012 J. Phys. Chem. C 116 3951

    [4]

    Lin X, Lin S, Xu Y, Chen H 2015 J. Mater. Chem. C 3 9057

    [5]

    Lin X, Lin S, Xu Y, Hakro A A, Hasan T, Zhang B, Yu B, Luo J, Li E, Chen H 2013 J. Mater. Chem. C 1 2131

    [6]

    Shi Z, Zhang Z, Kutana A, Yakobson B I 2015 ACS Nano 9 9802

    [7]

    Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T, Ciraci S 2009 Phys. Rev. B 80 155453

    [8]

    Bekaroglu E, Topsakal M, Cahangirov S, Ciraci S 2010 Phys. Rev. B 81 075433

    [9]

    Houmad M, Zaari H, Benyoussef A, Kenz A E, Ez-Zahraouy H 2015 Carbon 94 1021

    [10]

    Hsueh H C, Guo G Y, Louie S G 2011 Phys. Rev. B 84 085404

    [11]

    Lu T Y, Liao X X, Wang H Q, Zheng J C 2012 J. Mater. Chem. 22 10062

    [12]

    Wu I J, Guo G Y 2007 Phys. Rev. B 76 035343

    [13]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305

    [14]

    Zhang Y, Hu C H, Wen Y H, Wu S Q, Zhu Z Z 2011 New J. Phys. 13 063047

    [15]

    Wu I J, Guo G Y 2008 Phys. Rev. B 78 035447

    [16]

    Kaplan D, Swaminathan V, Recine G, Balu R, Karna S 2013 J. Appl. Phys. 113 183701

    [17]

    Pan L, Liu H J, Wen Y W, Tan X J, Lv H Y, Shi J, Tang X F 2011 Phys. Lett. A 375 614

    [18]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005

    [19]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401

    [20]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [21]

    Aversa C, Sipe J E 1995 Phys. Rev. B 52 14636

    [22]

    Sipe J E, Ghahramani E 1993 Phys. Rev. B 48 11705

    [23]

    Dadsetani M, Omidi A R 2015 J. Phys. Chem. C 119 16263

    [24]

    Hughes J L P, Sipe J E 1996 Phys. Rev. B 53 10751

    [25]

    Rashkeev S N, Lambrecht W R L, Segall B 1998 Phys. Rev. B 57 3905

    [26]

    Sharma S, Ambrosch-Draxl C 2004 Phys. Scr. 2004 128

    [27]

    Sharma S, Dewhurst J K, Ambrosch-Draxl C 2003 Phys. Rev. B 67 165332

    [28]

    Wang C Y, Guo G Y 2015 J. Phys. Chem. C 119 13268

    [29]

    Boyd R W 2003 Nonlinear Optics (2nd Ed.) (San Diego: Academic Press)

    [30]

    Ye P X 2007 Nonlinear Optical Physics (1st Ed.) (Bejing: Bejing University Press) p31 (in Chinese)[叶佩弦 2007 非线性光学物理 (第1版) (北京: 北京大学出版社) 第31页]

    [31]

    Guo G Y, Lin J C 2008 Phys. Rev. B 77 049901

    [32]

    Guo G Y, Lin J C 2005 Phys. Rev. B 72 075416

    [33]

    Lan Y Z 2017 Comput. Mat. Sci. 138 213

    [34]

    Gao C, Qiu S J, Du W S, Hou C Q, Guo H Y, Yang Z F 2011 Acta Phys. Sin. 60 044211 (in Chinese)[高潮, 邱少君, 杜渭松, 侯超奇, 郭红艳, 杨钊飞 2011 物理学报 60 044211]

    [35]

    Huang X M, Tao L M, Guo Y H, Gao Y, Wang C K 2007 Acta Phys. Sin. 56 2570 (in Chinese)[黄晓明, 陶丽敏, 郭雅慧, 高云, 王传奎 2007 物理学报 56 2570]

    [36]

    Lan Y Z 2018 Comput. Mat. Sci. 151 231

    [37]

    Aspnes D E 1972 Phys. Rev. B 6 4648

    [38]

    Kumar N, Najmaei S, Cui Q, Ceballos F, Ajayan P M, Lou J, Zhao H 2013 Phys. Rev. B 87 161403

    [39]

    Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R, Heinz T F 2013 Nano Lett. 13 3329

    [40]

    Malard L M, Alencar T V, Barboza A P M, Mak K F, de Paula A M 2013 Phys. Rev. B 87 201401

    [41]

    Wang H, Qian X 2017 Nano Lett. 17 5027

    [42]

    Grning M, Attaccalite C 2014 Phys. Rev. B 89 081102

    [43]

    Grning M, Attaccalite C 2014 Phys. Rev. B 90 199901

    [44]

    Tao L, Long H, Zhou B, Yu S F, Lau S P, Chai Y, Fung K H, Tsang Y H, Yao J, Xu D 2014 Nanoscale 6 9713

    [45]

    Woodward R I, Murray R T, Phelan C F, de Oliveira R E P, Runcorn T H, Kelleher E J R, Li S, de Oliveira E C, Fechine G J M, Eda G, de Matos C J S 2017 2D Mater. 4 011006

  • [1] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [2] 索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良. 分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜. 物理学报, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [3] 何欣, 白清顺, 白锦轩. 多晶石墨烯拉伸断裂行为的分子动力学模拟. 物理学报, 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [4] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [5] 鞠在强, 王研, 鲍园, 李盼云, 朱中柱, 张凯, 黄万霞, 袁清习, 朱佩平, 吴自玉. 二维光栅角度信号响应函数研究. 物理学报, 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [6] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. Doppler振镜正弦调制多光束激光外差二次谐波测量角度的方法. 物理学报, 2012, 61(1): 010601. doi: 10.7498/aps.61.010601
    [7] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究. 物理学报, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [8] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [9] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [10] 奚衍罡, 侯占佳, 刘丽英, 徐雷, 王文澄. 硼酸铅玻璃的光学二次谐波产生. 物理学报, 2002, 51(6): 1295-1299. doi: 10.7498/aps.51.1295
    [11] 白波, 郑坚, 刘万东, 俞昌旋, 蒋小华, 刘慎业, 郑志坚. 1.053μm激光打靶产生的二次谐波. 物理学报, 2001, 50(4): 726-729. doi: 10.7498/aps.50.726
    [12] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
    [13] 刘启明, 赵修建, 干福熹. Ge-As-S体系玻璃中光学二次谐波发生及其极化机理分析. 物理学报, 2000, 49(9): 1726-1730. doi: 10.7498/aps.49.1726
    [14] 刘丽英, 王恭明, 陆兴泽, 郑家骠, 王文澄. Langmuir-Blodgett膜透射光学二次谐波产生研究的多次反射修正. 物理学报, 1997, 46(1): 78-86. doi: 10.7498/aps.46.78
    [15] 余靖, 刘丽英, 徐雷, 王文澄, 李富铭. 掺半花菁二氧化硅薄膜光学二次谐波产生. 物理学报, 1997, 46(6): 1125-1130. doi: 10.7498/aps.46.1125
    [16] 李列明, 孙鑫, 冯伟国. 金属-真空表面的二次谐波理论. 物理学报, 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [17] 詹达三, 潘少华. 准抛物型多量子阱结构中光学二次谐波. 物理学报, 1990, 39(12): 1893-1899. doi: 10.7498/aps.39.1893
    [18] 陈立群. 关于含二次非线性项受迫振动系统的混沌现象. 物理学报, 1989, 38(11): 1874-1876. doi: 10.7498/aps.38.1874
    [19] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性. 物理学报, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
    [20] 倪皖荪, 魏荣爵. 含二次非线性项受迫振动系统中的分岔与混沌现象. 物理学报, 1985, 34(4): 503-511. doi: 10.7498/aps.34.503
计量
  • 文章访问数:  7742
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-10
  • 修回日期:  2018-09-05
  • 刊出日期:  2018-11-05

/

返回文章
返回