搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶石墨烯纳米带热电性能的理论研究

许易 许小言 张薇 欧阳滔 唐超

引用本文:
Citation:

多晶石墨烯纳米带热电性能的理论研究

许易, 许小言, 张薇, 欧阳滔, 唐超

Thermoelectric properties of polycrystalline graphene nanoribbons

Xu Yi, Xu Xiao-Yan, Zhang Wei, Ouyang Tao, Tang Chao
PDF
HTML
导出引用
  • 热电材料能够将废热能直接转换成电能, 近年来受到了科技工作者们的广泛关注. 本文采用非平衡格林函数方法系统地研究了晶界对石墨烯纳米带热电性能的调控作用. 研究结果表明: 晶界能有效地提高石墨烯纳米带的塞贝克系数, 同时可以极大地抑制其热导(包含电子和声子部分). 基于这两个积极的效应, 多晶石墨烯纳米带的热电转换性能得到了显著的增强. 在室温下, 多晶石墨烯纳米带的热电品质因子约为0.3, 较完美石墨烯纳米带(约为0.05)提升了6倍左右. 并且发现晶界的数量和系统的长度还能进一步提升多晶石墨烯纳米带的热电性能, 但系统的宽度对其影响有限. 这些结果表明, 多晶结构可以显著提升石墨烯纳米带的热电转换效率. 这将为设计和制备基于石墨烯纳米带的热电器件提供新的途径.
    Thermoelectric materials, which can convert heat energy into electric energy and also from electric energy into heat energy, have aroused widespread interest of both theoretical and technological researches recently. Graphene is a typical two-dimensional carbon nanomaterial and regarded as a competitive candidate for the next-generation micro/nano-devices. Unfortunately, graphene is an inefficient thermoelectric material due to the extremely high thermal conductivity. To overcome this drawback, exploring an effective way to improve the thermoelectric performance is of critical importance. In this paper, using the nonequilibrium Green’s function approach, we systematically investigate the effects of grain boundary on the thermoelectric properties of graphene nanoribbons. The results show that owing to the existence of grain boundary, the phonons and electrons encounter great scatterings when they transmit through the polycrystalline graphene nanoribbons. These scatterings cause the phononic and electronic transmission coefficient to decrease dramatically, and thus leading the thermal conductance (including both electron and phonon parts) of graphene nanoribbons to be evidently suppressed. Meanwhile, such scatterings induce more intense transmission peaks and pits in the electronic transmission spectrum of polycrystalline graphene nanoribbons. Generally, the Seebeck coefficient depends on the derivative of electronic transmission coefficient. The larger the logarithmic derivative of transmission, the higher the Seebeck coefficient can be obtained. Therefore Seebeck coefficient is improved obviously in the polycrystalline graphene nanoribbons. Based on such two positive effects, the thermoelectric performance of polycrystalline graphene nanoribbons is significantly enhanced. At room temperature, the thermoelectric figure of merit of polycrystalline graphene nanoribbons can approach to 0.3, which is about 6 times larger than that of pristine graphene nanoribbon (figure of merit is about 0.05). It is also found that the quantity of grain boundaries and length of system can further improve the thermoelectric properties of the polycrystalline graphene nanoribbons, while the width of system has a limited influence on it. This is because the quantity of grain boundaries and length of polycrystalline graphene nanoribbons can give rise to more intense phonon and electron scatterings and further decreasing of thermal conductance and enhancement of Seebeck coefficient. The results presented in this paper demonstrate that polycrystalline structure is indeed an effective way to improve the thermoelectric conversion efficiency of graphene nanoribbons, and provide a theoretical guideline for designing and preparing thermoelectric devices based on graphene nanoribbons.
      通信作者: 欧阳滔, ouyangtao@xtu.edu.cn ; 唐超, tang_chao@xtu.edu.cn
    • 基金项目: 湖南省教育厅优秀青年基金(批准号: 17B252)资助的课题
      Corresponding author: Ouyang Tao, ouyangtao@xtu.edu.cn ; Tang Chao, tang_chao@xtu.edu.cn
    • Funds: Project supported by the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 17B252)
    [1]

    Tritt T M 2011 Annu. Rev. Mater. Res. 41 433Google Scholar

    [2]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [4]

    Zhu L, Li R, Yao K 2017 Phys. Chem. Chem. Phys. 19 4085Google Scholar

    [5]

    Zhu L, Li B, Yao K 2018 Nanotechnology 29 325206Google Scholar

    [6]

    Zhu L, Zou F, Gao G Y, Yao K 2017 Sci. Rep. 7 497Google Scholar

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [8]

    Geim A K 2009 Science 324 1530Google Scholar

    [9]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [10]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [11]

    Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018Google Scholar

    [12]

    Zhang H J, Zheng G G, Chen Y Y, Zou X J, Xu L H 2018 Chin. Phys. Lett. 35 038102Google Scholar

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [14]

    Dragoman D, Dragoman M 2007 Appl. Phys. Lett. 91 203116Google Scholar

    [15]

    Zhang H S, Guo Z X, Gong X G, Cao J X 2012 J. Appl. Phys. 112 123508Google Scholar

    [16]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413Google Scholar

    [17]

    Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506Google Scholar

    [18]

    Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Çagǧın T 2011 ACS Nano 5 3779Google Scholar

    [19]

    张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励 2012 物理学报 61 137101Google Scholar

    Zhang Y, Liu L Q, Jiao N D, Xi N, Wang Y C, Dong Z L 2012 Acta Phys. Sin. 61 137101Google Scholar

    [20]

    Tran V T, Saint Martin J, Dollfus P, Volz S 2017 Sci. Rep. 7 2313Google Scholar

    [21]

    林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103

    [22]

    Huang P Y, Ruiz Vargas C S, van der Zande Arend M, Whitney W S, Levendorf M P, Kevek J W, Shivank G, Alden J S, Hustedt C J, Zhu Y, Park J W, McEuen P L, Muller D A 2011 Nature 469 389Google Scholar

    [23]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [24]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806Google Scholar

    [25]

    Lee G H, Cooper R C, An S J, Lee S, Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J 2013 Science 340 1073Google Scholar

    [26]

    Rassin G, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [27]

    Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917Google Scholar

    [28]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381Google Scholar

    [29]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar

    [30]

    Xiao H P, Cao W, Ouyang T, Xu X Y, Ding Y C, Zhong J X 2018 Appl. Phys. Lett. 112 233107Google Scholar

    [31]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [32]

    Li T C, Lu S P 2008 Phys. Rev. B 77 085408Google Scholar

    [33]

    Pereira V M, Neto A H C, Peres N M R 2009 Phys. Rev. B 80 045401

    [34]

    Ouyang T, Hu M 2014 Nanotechnology 25 245401Google Scholar

  • 图 1  多晶石墨烯纳米带原子结构模型示意图

    Fig. 1.  Schematic diagram of polycrystalline graphene nanoribbons.

    图 2  完美石墨烯纳米带和多晶石墨烯纳米带的(a)声子热导和(b)声子透射系数(其中L = 196.48 Å, W = 17.04Å); (c)−(e)多晶石墨烯纳米带(N = 5)在3个典型频率下(频率分别是160.68, 585.04, 951.72 Hz)的声子局域态密度

    Fig. 2.  Comparison of (a) the phonon conductance, (b) the phonon transmission for perfect graphene nanoribbons and polycrystalline graphene nanoribbons (where L = 196.48 Å, W = 17.04 Å); (c)−(e) the local density of states in polycrystalline graphene (N = 5) at three typical frequency (160.68, 585.04 and 951.72 Hz).

    图 3  完美石墨烯纳米带和多晶石墨烯纳米带的电子性质 (a)电子透射系数; (b)电子电导; (c)电子热导; (d)塞贝克系数

    Fig. 3.  Electronic properties of perfect graphene and polycrystalline graphene: (a) The electronic transmission coefficient; (b) the electronic conductance; (c) the electronic contributed thermal conductance; (d) the Seebeck coefficient.

    图 4  完美和多晶石墨烯纳米带的热电品质因子随温度的变化

    Fig. 4.  Peak values of ZT as a function of temperature for perfect graphene nanoribbons and polycrystalline graphene nanoribbons.

    图 5  室温下(300 K), 完美与多晶石墨烯纳米带(N = 5)热电品质因子随系统(a)长度L和(b)宽度W的变化(阴影部分为标准偏差)

    Fig. 5.  Peak values of ZT of perfect and polycrystalline graphene nanoribbons (N = 5) at room temperature as a function of (a) nanoribbon length or (b) nanoribbon width. The shading part corresponds to the standard deviation.

  • [1]

    Tritt T M 2011 Annu. Rev. Mater. Res. 41 433Google Scholar

    [2]

    Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P, Gogna P 2007 Adv. Mater. 19 1043Google Scholar

    [3]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [4]

    Zhu L, Li R, Yao K 2017 Phys. Chem. Chem. Phys. 19 4085Google Scholar

    [5]

    Zhu L, Li B, Yao K 2018 Nanotechnology 29 325206Google Scholar

    [6]

    Zhu L, Zou F, Gao G Y, Yao K 2017 Sci. Rep. 7 497Google Scholar

    [7]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [8]

    Geim A K 2009 Science 324 1530Google Scholar

    [9]

    Barone V, Hod O, Scuseria G E 2006 Nano Lett. 6 2748Google Scholar

    [10]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [11]

    Nan H Y, Ni Z H, Wang J, Zafar Z, Shi Z X, Wang Y Y 2013 J. Raman Spectrosc. 44 1018Google Scholar

    [12]

    Zhang H J, Zheng G G, Chen Y Y, Zou X J, Xu L H 2018 Chin. Phys. Lett. 35 038102Google Scholar

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [14]

    Dragoman D, Dragoman M 2007 Appl. Phys. Lett. 91 203116Google Scholar

    [15]

    Zhang H S, Guo Z X, Gong X G, Cao J X 2012 J. Appl. Phys. 112 123508Google Scholar

    [16]

    Nika D L, Pokatilov E P, Askerov A S, Balandin A A 2009 Phys. Rev. B 79 155413Google Scholar

    [17]

    Karamitaheri H, Pourfath M, Faez R, Kosina H 2011 J. Appl. Phys. 110 054506Google Scholar

    [18]

    Haskins J, Kınacı A, Sevik C, Sevinçli H, Cuniberti G, Çagǧın T 2011 ACS Nano 5 3779Google Scholar

    [19]

    张嵛, 刘连庆, 焦念东, 席宁, 王越超, 董再励 2012 物理学报 61 137101Google Scholar

    Zhang Y, Liu L Q, Jiao N D, Xi N, Wang Y C, Dong Z L 2012 Acta Phys. Sin. 61 137101Google Scholar

    [20]

    Tran V T, Saint Martin J, Dollfus P, Volz S 2017 Sci. Rep. 7 2313Google Scholar

    [21]

    林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103

    [22]

    Huang P Y, Ruiz Vargas C S, van der Zande Arend M, Whitney W S, Levendorf M P, Kevek J W, Shivank G, Alden J S, Hustedt C J, Zhu Y, Park J W, McEuen P L, Muller D A 2011 Nature 469 389Google Scholar

    [23]

    Li X S, Cai W W, An J, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [24]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806Google Scholar

    [25]

    Lee G H, Cooper R C, An S J, Lee S, Zande A, Petrone N, Hammerberg A G, Lee C, Crawford B, Oliver W, Kysar J W, Hone J 2013 Science 340 1073Google Scholar

    [26]

    Rassin G, Shenoy V B, Ruoff R S 2010 Science 330 946Google Scholar

    [27]

    Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917Google Scholar

    [28]

    Wang J S, Wang J, Lu J T 2008 Eur. Phys. J. B 62 381Google Scholar

    [29]

    Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar

    [30]

    Xiao H P, Cao W, Ouyang T, Xu X Y, Ding Y C, Zhong J X 2018 Appl. Phys. Lett. 112 233107Google Scholar

    [31]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [32]

    Li T C, Lu S P 2008 Phys. Rev. B 77 085408Google Scholar

    [33]

    Pereira V M, Neto A H C, Peres N M R 2009 Phys. Rev. B 80 045401

    [34]

    Ouyang T, Hu M 2014 Nanotechnology 25 245401Google Scholar

  • [1] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理. 物理学报, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [2] 伍静, 崔春凤, 欧阳滔, 唐超. 基于贝叶斯算法的5-7环缺陷石墨烯纳米带热电性能优化设计. 物理学报, 2023, 72(4): 047201. doi: 10.7498/aps.72.20222135
    [3] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [4] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211843
    [5] 魏江涛, 杨亮亮, 魏磊, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. Si微/纳米带的制备与热电性能. 物理学报, 2021, 70(18): 187304. doi: 10.7498/aps.70.20210801
    [6] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211477
    [7] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [8] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [9] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [10] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [11] 周欣, 高仁斌, 谭仕华, 彭小芳, 蒋湘涛, 包本刚. 多空穴错位分布对石墨纳米带中热输运的影响. 物理学报, 2017, 66(12): 126302. doi: 10.7498/aps.66.126302
    [12] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [13] 卿前军, 周欣, 谢芳, 陈丽群, 王新军, 谭仕华, 彭小芳. 多通道石墨纳米带中弹性声学声子输运和热导特性. 物理学报, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [14] 何欣, 白清顺, 白锦轩. 多晶石墨烯拉伸断裂行为的分子动力学模拟. 物理学报, 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [15] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [16] 安兴涛, 刁淑萌. 门电压控制的硅烯量子线中电子输运性质. 物理学报, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [17] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能. 物理学报, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [18] 杜保立, 徐静静, 鄢永高, 唐新峰. 非化学计量比AgSbTe2+x化合物制备及热电性能. 物理学报, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [19] 郑小宏, 戴振翔, 王贤龙, 曾雉. B与N掺杂对单层石墨纳米带自旋极化输运的影响. 物理学报, 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [20] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能. 物理学报, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
计量
  • 文章访问数:  8059
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-22
  • 修回日期:  2019-09-26
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回